
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Regulation 2021

II Year – III Semester

CS3351 / DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

1

UNIT-I

COMBINATIONAL LOGIC

Combinational circuits-KMap-Analysis and Design Procedures-Binary Adder-Binary

Adder-Decimal Adder- Magnitude comparator-Decoder-Encoder-Multiplexers-

Demultiplexers

INTRODUCTION:

The digital system consists of two types of circuits, namely

(i) Combinational circuits

(ii) Sequential circuits

Combinational circuit consists of logic gates whose output at any time is

determined from the present combination of inputs. The logic gate is the most basic

building block of combinational logic. The logical function performed by a

combinational circuit is fully defined by a set of Boolean expressions.

Sequential logic circuit comprises both logic gates and the state of storage

elements such as flip-flops. As a consequence, the output of a sequential circuit

depends not only on present value of inputs but also on the past state of inputs.

In the previous chapter, we have discussed binary numbers, codes, Boolean

algebra and simplification of Boolean function and logic gates. In this chapter,

formulation and analysis of various systematic designs of combinational circuits will

be discussed.

A combinational circuit consists of input variables, logic gates, and output

variables. The logic gates accept signals from inputs and output signals are

generated according to the logic circuits employed in it. Binary information from the

given data transforms to desired output data in this process. Both input and output

are obviously the binary signals, i.e., both the input and output signals are of two

possible states, logic 1 and logic 0.

2

For n number of input variables to a combinational circuit, 2n possible

combinations of binary input states are possible. For each possible combination,

there is one and only one possible output combination. A combinational logic circuit

can be described by m Boolean functions and each output can be expressed in terms

of n input variables.

DESIGN PROCEDURES:

Any combinational circuit can be designed by the following steps of design

procedure.

1. The problem is stated.

2. Identify the input and output variables.

3. The input and output variables are assigned letter symbols.

4. Construction of a truth table to meet input -output requirements.

5. Writing Boolean expressions for various output variables in terms of input

variables.

6. The simplified Boolean expression is obtained by any method of

minimization—algebraic method, Karnaugh map method, or tabulation

method.

7. A logic diagram is realized from the simplified Boolean expression using logic

gates.

The following guidelines should be followed while choosing the preferred

form for hardware implementation:

1. The implementation should have the minimum number of gates, with the

gates used having the minimum number of inputs.

2. There should be a minimum number of interconnections.

3. Limitation on the driving capability of the gates should not be ignored.

3

Problems:

1. Design a combinational circuit with three inputs and one output. The output is 1

when the binary value of the inputs is less than 3. The output is 0 otherwise.

Solution:

Truth Table:

x y z F

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

K-map Simplification:

Logic Diagram:

The combinational circuit can be drawn as,

2. Design a combinational circuit with three inputs, x, y and z, and the three

outputs, A, B, and C. when the binary input is 0, 1, 2, or 3, the binary output is

4

one greater than the input. When the binary input is 4, 5, 6, or 7, the binary

output is one less than the input.

Solution:

Truth Table:

Derive the truth table that defines the required relationship between inputs and

outputs.

x y z A B C

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 0 1 1

1 0 1 1 0 0

1 1 0 1 0 1

1 1 1 1 1 0

Obtain the simplified Boolean functions for each output as a function of the input

variables.

K-map for output A:

The simplified expression from the map is: A= xz+ xy+ yz

Logic Diagram:

K-map for output B:

5

The simplified expression from the map is: B= x’y’z+ x’yz’+ xy’z’+ xyz

Logic Diagram:

K-map for output C:

The simplified expression from the map is: C=z’

Logic Diagram:

3. A majority circuit is a combinational circuit whose output is equal to 1 if the

input variables have more 1’s than 0’s. The output is 0 otherwise. Design a 3-

input majority circuit.

Solution:

Truth Table:

x y z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

6

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

K-map Simplification:

The simplified expression from the map is: xz+ yz+ xy

Logic Diagram:

4. Design a combinational circuit that generates the 9's complement of a BCD digit.

Solution:

Truth Table:

Inputs Outputs

A B C D w x y z

0 0 0 0 1 0 0 1

0 0 0 1 1 0 0 0

0 0 1 0 0 1 1 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 0 1

0 1 0 1 0 1 0 0

0 1 1 0 0 0 1 1

0 1 1 1 0 0 1 0

1 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0

7

K-map Simplification:

Logic Diagram:

8

ARITHMETIC CIRCUITS:

In this section, we will discuss those combinational logic building blocks that

can be used to perform addition and subtraction operations on binary numbers.

Addition and subtraction are the two most commonly used arithmetic operations, as

the other two, namely multiplication and division, are respectively the processes of

repeated addition and repeated subtraction.

The basic building blocks that form the basis of all hardware used to perform

the arithmetic operations on binary numbers are half-adder, full adder, half-

subtractor, full-subtractor.

Half-Adder:

A half-adder is a combinational circuit that can be used to add two binary bits.

It has two inputs that represent the two bits to be added and two outputs, with one

producing the SUM output and the other producing the CARRY.

 Block schematic of half-adder

The truth table of a half-adder, showing all possible input combinations and

the corresponding outputs are shown below.

Truth Table:

Inputs Outputs

A B Sum (S) Carry (C)

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

K-map simplification:

9

The Boolean expressions for the SUM and CARRY outputs are given by the

equations,

Sum, S = A’B+ AB’= AB

Carry, C = A . B

The first one representing the SUM output is that of an EX-OR gate, the

second one representing the CARRY output is that of an AND gate.

The logic diagram of the half adder is,

Logic Implementation of Half-adder

Full-Adder:

A full adder is a combinational circuit that forms the arithmetic sum of three

input bits. It consists of three inputs and two outputs.

Two of the input variables, represent the significant bits to be added. The

third input represents the carry from previous lower significant position. The block

diagram of full adder is given by,

Block schematic of full-adder

10

The full adder circuit overcomes the limitation of the half-adder, which can be

used to add two bits only. As there are three input variables, eight different input

combinations are possible.

Truth Table:

Inputs Outputs

A B Cin Sum (S) Carry (Cout)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

K-map simplification:

The Boolean expressions for the SUM and CARRY outputs are given by the eqns.,

Carry, Cout= AB+ ACin + BCin .

Logic Diagram:

11

The logic diagram of the full adder can also be implemented with two half-

adders and one OR gate. The S output from the second half adder is the exclusive-

OR of Cin and the output of the first half-adder, giving

 Sum = Cin  (A  B) [x  y = x’y+ xy’]

= Cin  (A’B+AB’)

= C’in (A’B+AB’) + Cin (A’B+AB’)’ [(x’y+xy’)’= (xy+x’y’)]

= C’in (A’B+AB’) + Cin (AB+A’B’)

= A’BC’in + AB’C’in + ABCin + A’B’Cin .

and the carry output is,

 Carry, Cout = AB+ Cin (A’B+AB’)

= AB+ A’BCin+ AB’Cin

= B (A+A’Cin) + AB’Cin

= B (A+Cin) + AB’Cin

= AB + BCin + AB’Cin

= AB + Cin (B + AB’)

= AB + Cin (A + B)

= AB+ ACin+ BCin.

12

Implementation of full adder with two half-adders and an OR gate

Half -Subtractor

A half-subtractor is a combinational circuit that can be used to subtract one

binary digit from another to produce a DIFFERENCE output and a BORROW output.

The BORROW output here specifies whether a ‘1’ has been borrowed to perform the

subtraction.

Block schematic of half-subtractor

The truth table of half-subtractor, showing all possible input combinations

and the corresponding outputs are shown below.

Inputs Outputs

A B Difference (D) Borrow (Bout)

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

K-map simplification:

The Boolean expressions for the DIFFERENCE and BORROW outputs are

given by the equations,

13

Difference, D = A’B+ AB’= A  B

Borrow, Bout = A’ . B

The first one representing the DIFFERENCE (D)output is that of an exclusive-

OR gate, the expression for the BORROW output (Bout) is that of an AND gate with

input A complemented before it is fed to the gate.

The logic diagram of the half adder is,

Logic Implementation of Half-Subtractor

Comparing a half-subtractor with a half-adder, we find that the expressions

for the SUM and DIFFERENCE outputs are just the same. The expression for

BORROW in the case of the half-subtractor is also similar to what we have for

CARRY in the case of the half-adder. If the input A, ie., the minuend is

complemented, an AND gate can be used to implement the BORROW output.

Full Subtractor:

A full subtractor performs subtraction operation on two bits, a minuend and

a subtrahend, and also takes into consideration whether a ‘1’ has already been

borrowed by the previous adjacent lower minuend bit or not.

As a result, there are three bits to be handled at the input of a full subtractor,

namely the two bits to be subtracted and a borrow bit designated as Bin. There are

two outputs, namely the DIFFERENCE output D and the BORROW output Bo. The

BORROW output bit tells whether the minuend bit needs to borrow a ‘1’ from the

next possible higher minuend bit.

 Block schematic of full- subtractor

The truth table for full-subtractor is,

Inputs Outputs

14

A B Bin Difference(D) Borrow(Bout)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

K-map simplification:

The Boolean expressions for the DIFFERENCE and BORROW outputs are

given by the equations,

Borrow, Bout = A’B+ A’Bin + BBin .

The logic diagram for the above functions is shown as,

15

Implementation of full- subtractor

The logic diagram of the full-subtractor can also be implemented with two

half-subtractors and one OR gate. The difference,D output from the second half

subtractor is the exclusive-OR of Bin and the output of the first half-subtractor, giving

Difference,D= Bin  (A  B) [x  y = x’y+ xy’]

= Bin  (A’B+AB’)

= B’in (A’B+AB’) + Bin (A’B+AB’)’ [(x’y+xy’)’= (xy+x’y’)]

= B’in (A’B+AB’) + Bin (AB+A’B’)

= A’BB’in + AB’B’in + ABBin + A’B’Bin .

and the borrow output is,

 Borrow, Bout = A’B+ Bin (A’B+AB’)’ [(x’y+xy’)’= (xy+x’y’)]

= A’B+ Bin (AB+A’B’)

= A’B+ ABBin+ A’B’Bin

= B (A’+ABin) + A’B’Bin

= B (A’+Bin) + A’B’Bin

= A’B + BBin + A’B’Bin

= A’B + Bin(B + A’B’)

= A’B + Bin (B+ A’)

= A’B+ BBin+ A’Bin.

Therefore,

We can implement full-subtractor using two half-subtractors and OR gate as,

16

Implementation of full-subtractor with two half-subtractors and an OR gate

Binary Adder (Parallel Adder)

The 4-bit binary adder using full adder circuits is capable of adding two 4-bit

numbers resulting in a 4-bit sum and a carry output as shown in figure below.

4-bit binary parallel Adder

Since all the bits of augend and addend are fed into the adder circuits

simultaneously and the additions in each position are taking place at the same time,

this circuit is known as parallel adder.

Let the 4-bit words to be added be represented by,

A3 A2 A1 A0= 1 1 1 1 and B3 B2 B1 B0= 1 0 1 1.

The bits are added with full adders, starting from the least significant position,

to form the sum it and carry bit. The input carry C0 in the least significant position

must be 0. The carry output of the lower order stage is connected to the carry input

of the next higher order stage. Hence this type of adder is called ripple-carry adder.

17

In the least significant stage, A0, B0 and C0 (which is 0) are added resulting in

sum S0 and carry C1. This carry C1 becomes the carry input to the second stage.

Similarly in the second stage, A1, B1 and C1 are added resulting in sum S1 and carry

C2, in the third stage, A2, B2 and C2 are added resulting in sum S2 and carry C3, in the

third stage, A3, B3 and C3 are added resulting in sum S3 and C4, which is the output

carry. Thus the circuit results in a sum (S3 S2 S1 S0) and a carry output (Cout).

Though the parallel binary adder is said to generate its output immediately

after the inputs are applied, its speed of operation is limited by the carry

propagation delay through all stages. However, there are several methods to reduce

this delay.

One of the methods of speeding up this process is look-ahead carry addition

which eliminates the ripple-carry delay.

Carry Look Ahead Adder:

In Parallel adder, all the bits of the augend and the addend are available for

computation at the same time. The carry output of each full-adder stage is connected

to the carry input of the next high-order stage. Since each bit of the sum output

depends on the value of the input carry, time delay occurs in the addition process.

This time delay is called as carry propagation delay.

For example, addition of two numbers (1111+ 1011) gives the result as 1010.

Addition of the LSB position produces a carry into the second position. This carry

when added to the bits of the second position, produces a carry into the third

position. This carry when added to bits of the third position, produces a carry into

the last position. The sum bit generated in the last position (MSB) depends on the

carry that was generated by the addition in the previous position. i.e., the adder will

not produce correct result until LSB carry has propagated through the intermediate

full-adders. This represents a time delay that depends on the propagation delay

18

produced in an each full-adder. For example, if each full adder is considered to have

a propagation delay of 8nsec, then S3 will not react its correct value until 24 nsec

after LSB is generated. Therefore total time required to perform addition is 24+ 8 =

32nsec.

The method of speeding up this process by eliminating inter stage carry delay

is called look ahead-carry addition. This method utilizes logic gates to look at the

lower order bits of the augend and addend to see if a higher-order carry is to be

generated. It uses two functions: carry generate and carry propagate.

Full-Adder circuit

Consider the circuit of the full-adder shown above. Here we define two

functions: carry generate (Gi) and carry propagate (Pi) as,

Carry propagate, Pi = Ai  Bi

Carry generate, Gi = Ai . Bi

the output sum and carry can be expressed as,

 Si = Pi  Ci

Ci+1 = Gi + Pi.Ci

19

Gi (carry generate), it produces a carry 1 when both Ai and Bi are 1, regardless of the

input carry Ci. Pi (carry propagate), is the term associated with the propagation of

the carry from Ci to Ci+1.

The Boolean functions for the carry outputs of each stage and substitute for

each Ci its value from the previous equation:

C0= input carry

C1= G0 + P0C0

C2= G1 + P1C1 = G1 + P1 (G0 + P0C0)

= G1 + P1G0 + P1P0C0

C3= G2 + P2C2 = G2 + P2 (G1 + P1G0 + P1P0C0)

 = G2 + P2G1 + P2P1G0 + P2P1P0C0

Since the Boolean function for each output carry is expressed in sum of

products, each function can be implemented with one level of AND gates followed

by an OR gate. The three Boolean functions for C1, C2 and C3 are implemented in the

carry look-ahead generator as shown below.

Logic diagram of Carry Look-ahead Generator

20

Note that C3 does not have to wait for C2 and C1 to propagate; in fact C3 is

propagated at the same time as C1 and C2.

Using a Look-ahead Generator we can easily construct a 4-bit parallel adder

with a Look-ahead carry scheme. Each sum output requires two exclusive-OR gates.

The output of the first exclusive-OR gate generates the Pi variable, and the AND gate

generates the Gi variable. The carries are propagated through the carry look-ahead

generator and applied as inputs to the second exclusive-OR gate. All output carries

are generated after a delay through two levels of gates. Thus, outputs S1 through S3

have equal propagation delay times.

4-Bit Adder with Carry Look-ahead

Binary Subtractor (Parallel Subtractor)

21

The subtraction of unsigned binary numbers can be done most conveniently

by means of complements. The subtraction (A – B) can be done by taking the 2’s

complement of B and adding it to A. The 2’s complement can be obtained by taking

the 1’s complement and adding 1 to the least significant pair of bits. The 1’s

complement can be implemented with inverters and a 1 can be added to the sum

through the input carry.

The circuit for subtracting (A – B) consists of an adder with inverters placed

between each data input B and the corresponding input of the full adder. The input

carry C0 must be equal to 1 when performing subtraction. The operation thus

performed becomes A, plus the 1’s complement of B, plus1. This is equal to A plus

the 2’s complement of B.

Let the 4-bit words to be subtracted be represented by,

A3 A2 A1 A0= 1 1 1 1 and B3 B2 B1 B0= 1 0 1 1.

4-bit Parallel Subtractor

Parallel Adder/ Subtractor

22

The addition and subtraction operation can be combined into one circuit with

one common binary adder. This is done by including an exclusive-OR gate with each

full adder. A 4-bit adder Subtractor circuit is shown below.

4-Bit Adder Subtractor

The mode input M controls the operation. When M= 0, the circuit is an adder

and when M=1, the circuit becomes a Subtractor. Each exclusive-OR gate receives

input M and one of the inputs of B. When M=0, we have B 0= B. The full adders

receive the value of B, the input carry is 0, and the circuit performs A plus B. When

M=1, we have B 1= B’ and C0=1. The B inputs are all complemented and a 1 is

added through the input carry. The circuit performs the operation A plus the 2’s

complement of B. The exclusive-OR with output V is for detecting an overflow.

Decimal Adder (BCD Adder)

The digital system handles the decimal number in the form of binary coded

decimal numbers (BCD). A BCD adder is a circuit that adds two BCD bits and

produces a sum digit also in BCD.

Consider the arithmetic addition of two decimal digits in BCD, together with

an input carry from a previous stage. Since each input digit does not exceed 9, the

output sum cannot be greater than 9+ 9+1 = 19; the 1 is the sum being an input carry.

The adder will form the sum in binary and produce a result that ranges from 0

through 19.

These binary numbers are labeled by symbols C, S3, S2, S1, S0, C is the carry.

The columns under the binary sum list the binary values that appear in the outputs

23

of the 4-bit binary adder. The output sum of the two decimal digits must be

represented in BCD.

To implement BCD adder:

• For initial addition , a 4-bit binary adder is required,

• Combinational circuit to detect whether the sum is greater than 9 and

• One more 4-bit adder to add 6 (0110)2 with the sum of the first 4-bit adder, if

the sum is greater than 9 or carry is 1.

The logic circuit to detect sum greater than 9 can be determined by

simplifying the Boolean expression of the given truth table.

The two decimal digits, together with the input carry, are first added in the

top4-bit binary adder to provide the binary sum. When the output carry is equal to

zero, nothing is added to the binary sum. When it is equal to one, binary (0110)2 is

added to the binary sum through the bottom 4-bit adder.

24

The output carry generated from the bottom adder can be ignored, since it

supplies information already available at the output carry terminal. The output carry

from one stage must be connected to the input carry of the next higher-order stage.

MULTIPLEXER: (Data Selector)

A Multiplexer or MUX, is a combinational circuit with more than one input

line, one output line and more than one selection line. A multiplexer selects binary

information present from one of many input lines, depending upon the logic status

of the selection inputs, and routes it to the output line. Normally, there are 2n input

lines and n selection lines whose bit combinations determine which input is selected.

The multiplexer is often labeled as MUX in block diagrams.

A multiplexer is also called a data selector, since it selects one of many inputs

and steers the binary information to the output line.

Block diagram of Multiplexer

25

2-to-1- line Multiplexer:

The circuit has two data input lines, one output line and one selection line, S.

When S= 0, the upper AND gate is enabled and I0 has a path to the output.

When S=1, the lower AND gate is enabled and I1 has a path to the output.

Logic diagram

The multiplexer acts like an electronic switch that selects one of the two sources.

Truth table:

4-to-1-line Multiplexer

A 4-to-1-line multiplexer has four (2n) input lines, two (n) select lines and one

output line. It is the multiplexer consisting of four input channels and information of

one of the channels can be selected and transmitted to an output line according to

the select inputs combinations. Selection of one of the four input channel is possible

by two selection inputs.

Each of the four inputs I0 through I3, is applied to one input of AND gate.

Selection lines S1 and S0 are decoded to select a particular AND gate. The outputs of

the AND gate are applied to a single OR gate that provides the 1-line output.

S Y

0 I0

1 I1

26

4-to-1-Line Multiplexer

Function table:

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

To demonstrate the circuit operation, consider the case when S1S0= 10. The

AND gate associated with input I2 has two of its inputs equal to 1 and the third input

connected to I2. The other three AND gates have atleast one input equal to 0, which

makes their outputs equal to 0. The OR output is now equal to the value of I2,

providing a path from the selected input to the output.

The data output is equal to I0 only if S1= 0 and S0= 0; Y= I0S1’S0’.

The data output is equal to I1 only if S1= 0 and S0= 1; Y= I1S1’S0.

The data output is equal to I2 only if S1= 1 and S0= 0; Y= I2S1S0’.

The data output is equal to I3 only if S1= 1 and S0= 1; Y= I3S1S0.

When these terms are ORed, the total expression for the data output is,

Y= I0S1’S0’+ I1S1’S0 +I2S1S0’+ I3S1S0.

As in decoder, multiplexers may have an enable input to control the operation

of the unit. When the enable input is in the inactive state, the outputs are disabled,

and when it is in the active state, the circuit functions as a normal multiplexer.

Quadruple 2-to-1 Line Multiplexer

27

This circuit has four multiplexers, each capable of selecting one of two input

lines. Output Y0 can be selected to come from either A0 or B0. Similarly, output Y1

may have the value of A1 or B1, and so on. Input selection line, S selects one of the

lines in each of the four multiplexers. The enable input E must be active for normal

operation.

Although the circuit contains four 2-to-1-Line multiplexers, it is viewed as a

circuit that selects one of two 4-bit sets of data lines. The unit is enabled when E= 0.

Then if S= 0, the four A inputs have a path to the four outputs. On the other hand, if

S=1, the four B inputs are applied to the outputs. The outputs have all 0’s when E= 1,

regardless of the value of S.

Application:

28

1. They are used as a data selector to select out of many data inputs.

2. They can be used to implement combinational logic circuit.

3. They are used in time multiplexing systems.

4. They are used in frequency multiplexing systems.

5. They are used in A/D and D/A converter.

6. They are used in data acquisition systems.

Implementation of Boolean Function using MUX:

1. Implement the following boolean function using 4: 1 multiplexer,

F (A, B, C) = ∑m (1, 3, 5, 6).

Solution:

Variables, n= 3 (A, B, C)

Select lines= n-1 = 2 (S1, S0)

2n-1 to MUX i.e., 22 to 1 = 4 to 1 MUX

Input lines= 2n-1 = 22 = 4 (D0, D1, D2, D3)

Implementation table:

Apply variables A and B to the select lines. The procedures for implementing the

function are:

i. List the input of the multiplexer

ii. List under them all the minterms in two rows as shown below.

The first half of the minterms is associated with A’ and the second half

with A. The given function is implemented by circling the minterms of the

function and applying the following rules to find the values for the inputs of the

multiplexer.

1. If both the minterms in the column are not circled, apply 0 to the corresponding

input.

2. If both the minterms in the column are circled, apply 1 to the corresponding

input.

3. If the bottom minterm is circled and the top is not circled, apply C to the input.

4. If the top minterm is circled and the bottom is not circled, apply C’ to the input.

29

Multiplexer Implementation:

2. F (x, y, z) = ∑m (1, 2, 6, 7)

Implementation table:

Multiplexer Implementation:

30

3. F (A, B, C) = ∑m (1, 2, 4, 5)

Solution:

Variables, n= 3 (A, B, C)

Select lines= n-1 = 2 (S1, S0)

2n-1 to MUX i.e., 22 to 1 = 4 to 1 MUX

Input lines= 2n-1 = 22 = 4 (D0, D1, D2, D3)

Implementation table:

Multiplexer Implementation

4. F(A, B, C, D)= ∑m (0, 1, 3, 4, 8, 9, 15)

31

Solution:

Variables, n= 4 (A, B, C, D)

Select lines= n-1 = 3 (S2, S1, S0)

2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation table:

Multiplexer Implementation:

5. Implement the Boolean function using 8: 1 and also using 4:1 multiplexer

F (A, B, C, D) = ∑m (0, 1, 2, 4, 6, 9, 12, 14)

Solution:

Variables, n= 4 (A, B, C, D)

Select lines= n-1 = 3 (S2, S1, S0)

2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation table:

32

Multiplexer Implementation (Using 8: 1 MUX)

Using 4: 1 MUX:

6. F (A, B, C, D) = ∑m (1, 3, 4, 11, 12, 13, 14, 15)

33

Solution:

Variables, n= 4 (A, B, C, D)

Select lines= n-1 = 3 (S2, S1, S0)

2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation table:

Multiplexer Implementation:

7. Implement the Boolean function using 8: 1 multiplexer.

F (A, B, C, D) = A’BD’ + ACD + B’CD + A’C’D.

Solution:

Convert into standard SOP form,

= A’BD’ (C’+C) + ACD (B’+B) + B’CD (A’+A) + A’C’D (B’+B)

= A’BC’D’ + A’BCD’+ AB’CD + ABCD +A’B’CD + AB’CD +A’B’C’D+ A’BC’D

34

= A’BC’D’ + A’BCD’+ AB’CD + ABCD +A’B’CD +A’B’C’D+ A’BC’D

= m4+ m6+ m11+ m15+ m3+ m1+ m5

= ∑m (1, 3, 4, 5, 6, 11, 15)

Implementation table:

Multiplexer Implementation:

8. Implement the Boolean function using 8: 1 multiplexer.

F (A, B, C, D) = AB’D + A’C’D + B’CD’ + AC’D.

Solution:

= AB’D (C’+C) + A’C’D (B’+B) + B’CD’ (A’+A) + AC’D (B’+B)

= AB’C’D + AB’CD+ A’B’C’D + A’BC’D +A’B’CD’ + AB’CD’ +AB’C’D+

ABC’D

= AB’C’D + AB’CD+ A’B’C’D + A’BC’D +A’B’CD’ + AB’CD’+ ABC’D

= m9+ m11+ m1+ m5+ m2+ m10+ m13

= ∑m (1, 2, 5, 9, 10, 11, 13).

Implementation Table:

35

Multiplexer Implementation:

9. Implement the Boolean function using 8: 1 and also using 4:1 multiplexer

F (w, x, y, z) = ∑m (1, 2, 3, 6, 7, 8, 11, 12, 14)

Solution:

Variables, n= 4 (w, x, y, z)

Select lines= n-1 = 3 (S2, S1, S0)

2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation table:

Multiplexer Implementation (Using 8:1 MUX):

36

(Using 4:1 MUX)

10. Implement the Boolean function using 8: 1 multiplexer

37

F (A, B, C, D) = ∏m (0, 3, 5, 8, 9, 10, 12, 14)

Solution:

Variables, n= 4 (A, B, C, D)

Select lines= n-1 = 3 (S2, S1, S0)

2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation table:

Multiplexer Implementation:

11. Implement the Boolean function using 8: 1 multiplexer

F (A, B, C, D) = ∑m (0, 2, 6, 10, 11, 12, 13) + d (3, 8, 14)

Solution:

Variables, n= 4 (A, B, C, D)

Select lines= n-1 = 3 (S2, S1, S0)

2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX

Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7)

Implementation Table:

38

Multiplexer Implementation:

DEMULTIPLEXER

Demultiplex means one into many. Demultiplexing is the process of taking

information from one input and transmitting the same over one of several outputs.

A demultiplexer is a combinational logic circuit that receives information on a

single input and transmits the same information over one of several (2n) output lines.

Block diagram of demultiplexer

39

The block diagram of a demultiplexer which is opposite to a multiplexer in its

operation is shown above. The circuit has one input signal, ‘n’ select signals and 2n

output signals. The select inputs determine to which output the data input will be

connected. As the serial data is changed to parallel data, i.e., the input caused to

appear on one of the n output lines, the demultiplexer is also called a “data

distributer” or a “serial-to-parallel converter”.

1-to-4 line Demultiplexer

A 1-to-4 demultiplexer has a single input, Din, four outputs (Y0 to Y3) and two

select inputs (S1 and S0).

Logic Symbol

The input variable Din has a path to all four outputs, but the input information

is directed to only one of the output lines. The truth table of the 1-to-4 demultiplexer

is shown below.

Enable S1 S0 Din Y0 Y1 Y2 Y3

0 x x x 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0

1 0 1 0 0 0 0 0

1 0 1 1 0 1 0 0

1 1 0 0 0 0 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 1
Truth table of 1-to-4 demultiplexer

40

From the truth table, it is clear that the data input, Din is connected to the

output Y0, when S1= 0 and S0= 0 and the data input is connected to output Y1 when

S1= 0 and S0= 1. Similarly, the data input is connected to output Y2 and Y3 when S1= 1

and S0= 0 and when S1= 1 and S0= 1, respectively. Also, from the truth table, the

expression for outputs can be written as follows,

Y0= S1’S0’Din

Y1= S1’S0Din

Y2= S1S0’Din

Y3= S1S0Din

Logic diagram of 1-to-4 demultiplexer

Now, using the above expressions, a 1-to-4 demultiplexer can be implemented

using four 3-input AND gates and two NOT gates. Here, the input data line Din, is

connected to all the AND gates. The two select lines S1, S0 enable only one gate at a

time and the data that appears on the input line passes through the selected gate to

the associated output line.

41

1-to-8 Demultiplexer

A 1-to-8 demultiplexer has a single input, Din, eight outputs (Y0 to Y7) and

three select inputs (S2, S1 and S0). It distributes one input line to eight output lines

based on the select inputs. The truth table of 1-to-8 demultiplexer is shown below.

Din S2 S1 S0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 x x x 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0

Truth table of 1-to-8 demultiplexer

From the above truth table, it is clear that the data input is connected with one

of the eight outputs based on the select inputs. Now from this truth table, the

expression for eight outputs can be written as follows:

Y0= S2’S1’S0’Din Y4= S2 S1’S0’Din

Y1= S2’S1’S0Din Y5= S2 S1’S0Din

Y2= S2’S1S0’Din Y6= S2 S1S0’Din

Y3= S2’S1S0Din Y7= S2S1S0Din

Now using the above expressions, the logic diagram of a 1-to-8 demultiplexer

can be drawn as shown below. Here, the single data line, Din is connected to all the

eight AND gates, but only one of the eight AND gates will be enabled by the select

input lines. For example, if S2S1S0= 000, then only AND gate-0 will be enabled and

thereby the data input, Din will appear at Y0. Similarly, the different combinations of

the select inputs, the input Din will appear at the respective output.

42

Logic diagram of 1-to-8 demultiplexer

1. Design 1:8 demultiplexer using two 1:4 DEMUX.

43

2. Implement full subtractor using demultiplexer.

Inputs Outputs

A B Bin Difference(D) Borrow(Bout)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Applications:

1. It can be used as a decoder

2. It can be used as a data distributer

3. It is used in time division multiplexing at the receiving end as a data separator.

4. It can be used to implement Boolean expressions.

44

DECODERS

A decoder is a combinational circuit that converts binary information from ‘n’

input lines to a maximum of ‘2n’ unique output lines. The general structure of

decoder circuit is

General structure of decoder

The encoded information is presented as ‘n’ inputs producing ‘2n’ possible

outputs. The 2n output values are from 0 through 2n-1. A decoder is provided with

enable inputs to activate decoded output based on data inputs. When any one enable

input is unasserted, all outputs of decoder are disabled.

Binary Decoder (2 to 4 decoder)

A binary decoder has ‘n’ bit binary input and a one activated output out of 2n

outputs. A binary decoder is used when it is necessary to activate exactly one of 2n

outputs based on an n-bit input value.

2-to-4 Line decoder

45

Here the 2 inputs are decoded into 4 outputs, each output representing one of

the minterms of the two input variables.

Inputs Outputs

Enable A B Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

As shown in the truth table, if enable input is 1 (EN= 1) only one of the

outputs (Y0 – Y3), is active for a given input.

The output Y0 is active, ie., Y0= 1 when inputs A= B= 0,

Y1 is active when inputs, A= 0 and B= 1,

Y2 is active, when input A= 1 and B= 0,

Y3 is active, when inputs A= B= 1.

3-to-8 Line Decoder

A 3-to-8 line decoder has three inputs (A, B, C) and eight outputs (Y0- Y7).

Based on the 3 inputs one of the eight outputs is selected.

The three inputs are decoded into eight outputs, each output representing one

of the minterms of the 3-input variables. This decoder is used for binary-to-octal

conversion. The input variables may represent a binary number and the outputs will

represent the eight digits in the octal number system. The output variables are

mutually exclusive because only one output can be equal to 1 at any one time. The

output line whose value is equal to 1 represents the minterm equivalent of the binary

number presently available in the input lines.

Inputs Outputs

A B C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

46

3-to-8 line decoder

BCD to 7-Segment Display Decoder

A seven-segment display is normally used for displaying any one of the

decimal digits, 0 through 9. A BCD-to-seven segment decoder accepts a decimal digit

in BCD and generates the corresponding seven-segment code.

Each segment is made up of a material that emits light when current is passed

through it. The segments activated during each digit display are tabulated as

47

Digit Display Segments Activated

0 a, b, c, d, e, f

1 b, c

2 a, b, d, e, g

3 a, b, c, d, g

4 b, c, f, g

5 a, c, d, f, g

6 a, c, d, e, f, g

7 a, b, c

8 a, b, c, d, e, f, g

9 a, b, c, d, f, g

48

Truth table:

Digit
BCD code 7-Segment code

A B C D a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

K-map Simplification:

49

50

Logic Diagram

BCD to 7-segment display decoder

Applications of decoders:

1. Decoders are used in counter system.

2. They are used in analog to digital converter.

3. Decoder outputs can be used to drive a display system.

4. Address decoding

5. Implementation of combinational circuits.

6. Code converters.

51

ENCODERS

An encoder is a digital circuit that performs the inverse operation of a

decoder. Hence, the opposite of the decoding process is called encoding. An encoder

is a combinational circuit that converts binary information from 2n input lines to a

maximum of ‘n’ unique output lines.

The general structure of encoder circuit is

General structure of Encoder

It has 2n input lines, only one which 1 is active at any time and ‘n’ output lines.

It encodes one of the active inputs to a coded binary output with ‘n’ bits. In an

encoder, the number of outputs is less than the number of inputs.

Octal-to-Binary Encoder

It has eight inputs (one for each of the octal digits) and the three outputs that

generate the corresponding binary number. It is assumed that only one input has a

value of 1 at any given time.

The encoder can be implemented with OR gates whose inputs are determined

directly from the truth table. Output z is equal to 1, when the input octal digit is 1 or

3 or 5 or 7. Output y is 1 for octal digits 2, 3, 6, or 7 and the output is 1 for digits 4, 5,

6 or 7.

Inputs Outputs

D0 D1 D2 D3 D4 D5 D6 D7 A B C

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

52

These conditions can be expressed by the following output Boolean functions:

z= D1+ D3+ D5+ D7

y= D2+ D3+ D6+ D7

x= D4+ D5+ D6+ D7

The encoder can be implemented with three OR gates. The encoder defined in

the below table, has the limitation that only one input can be active at any given time.

If two inputs are active simultaneously, output produces an undefined combination.

For eg., if D3 and D6 are 1 simultaneously, the output of the encoder may be

111. This does not represent either D6 or D3. To resolve this problem, encoder circuits

must establish an input priority to ensure that only one input is encoded. If we

establish a higher priority for inputs with higher subscript numbers and if D3 and D6

are 1 at the same time, the output will be 110 because D6 has higher priority than D3.

Octal-to-Binary Encoder

Another problem in the octal-to-binary encoder is that an output with all 0’s is

generated when all the inputs are 0; this output is same as when D0 is equal to 1. The

discrepancy can be resolved by providing one more output to indicate that atleast

one input is equal to 1.

Priority Encoder

A priority encoder is an encoder circuit that includes the priority function. In

priority encoder, if two or more inputs are equal to 1 at the same time, the input

having the highest priority will take precedence.

In addition to the two outputs x and y, the circuit has a third output, V (valid

bit indicator). It is set to 1 when one or more inputs are equal to 1. If all inputs are 0,

there is no valid input and V is equal to 0.

53

The higher the subscript number, higher the priority of the input. Input D3,

has the highest priority. So, regardless of the values of the other inputs, when D3 is 1,

the output for xy is 11.

D2 has the next priority level. The output is 10, if D2= 1 provided D3= 0. The

output for D1 is generated only if higher priority inputs are 0, and so on down the

priority levels.

Truth table:

Inputs Outputs

D0 D1 D2 D3 x y V

0 0 0 0 x x 0

1 0 0 0 0 0 1

x 1 0 0 0 1 1

x x 1 0 1 0 1

x x x 1 1 1 1

Although the above table has only five rows, when each don’t care condition

is replaced first by 0 and then by 1, we obtain all 16 possible input combinations. For

example, the third row in the table with X100 represents minterms 0100 and 1100.

The don’t care condition is replaced by 0 and 1 as shown in the table below.

Modified Truth table:

Inputs Outputs

D0 D1 D2 D3 x y V

0 0 0 0 x x 0

1 0 0 0 0 0 1

0
1

1
1

0
0

0
0

0 1 1

0
0
1
1

0
1
0
1

1
1
1
1

0
0
0
0

1 0 1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
1
1
1
1
1
1
1

1 1 1

54

K-map Simplification:

The priority encoder is implemented according to the above Boolean functions.

4-Input Priority Encoder

55

MAGNITUDE COMPARATOR

A magnitude comparator is a combinational circuit that compares two given

numbers (A and B) and determines whether one is equal to, less than or greater than

the other. The output is in the form of three binary variables representing the

conditions A = B, A>B and A<B, if A and B are the two numbers being compared.

Block diagram of magnitude comparator

For comparison of two n-bit numbers, the classical method to achieve the

Boolean expressions requires a truth table of 22n entries and becomes too lengthy and

cumbersome.

2.8.1 2-bit Magnitude Comparator

The truth table of 2-bit comparator is given in table below

Truth table:

Inputs Outputs

A1 A0 B1 B0 A>B A=B A<B

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

56

K-map Simplification:

57

Logic Diagram:

2-bit Magnitude Comparator

 4-bit Magnitude Comparator:

Let us consider the two binary numbers A and B with four digits each. Write

the coefficient of the numbers in descending order as,

A = A3A2A1A0

B = B3 B2 B1 B0,

Each subscripted letter represents one of the digits in the number. It is

observed from the bit contents of two numbers that A = B when A3 = B3, A2 = B2, A1

= B1 and A0 = B0. When the numbers are binary they possess the value of either 1 or 0,

the equality relation of each pair can be expressed logically by the equivalence

function as,

58

Xi = AiBi + Ai′Bi′ for i = 1, 2, 3, 4.

Or, Xi = (A  B)′. or, Xi ′ = A  B

Or, Xi = (AiBi′ + Ai′Bi)′.

where, Xi =1 only if the pair of bits in position i are equal (ie., if both are 1 or both

are 0).

To satisfy the equality condition of two numbers A and B, it is necessary that

all Xi must be equal to logic 1. This indicates the AND operation of all Xi variables.

In other words, we can write the Boolean expression for two equal 4-bit numbers.

(A = B) = X3X2X1 X0.

The binary variable (A=B) is equal to 1 only if all pairs of digits of the two numbers

are equal.

To determine if A is greater than or less than B, we inspect the relative

magnitudes of pairs of significant bits starting from the most significant bit. If the

two digits of the most significant position are equal, the next significant pair of digits

is compared. The comparison process is continued until a pair of unequal digits is

found. It may be concluded that A>B, if the corresponding digit of A is 1 and B is 0.

If the corresponding digit of A is 0 and B is 1, we conclude that A<B. Therefore, we

can derive the logical expression of such sequential comparison by the following two

Boolean functions,

(A>B) = A3B3′ +X3A2B2′ +X3X2A1B1′ +X3X2X1A0B0′

(A<B) = A3′B3 +X3A2′B2 +X3X2A1′B1 +X3X2X1A0′B0

The symbols (A>B) and (A<B) are binary output variables that are equal to 1

when A>B or A<B, respectively.

The gate implementation of the three output variables just derived is simpler

than it seems because it involves a certain amount of repetition. The unequal outputs

can use the same gates that are needed to generate the equal output. The logic

diagram of the 4-bit magnitude comparator is shown below,

59

4-bit Magnitude Comparator

The four x outputs are generated with exclusive-NOR circuits and applied to

an AND gate to give the binary output variable (A=B). The other two outputs use

the x variables to generate the Boolean functions listed above. This is a multilevel

implementation and has a regular pattern.

1

UNIT-II

SYNCHRONOUS SEQUENTIAL LOGIC

Introduction to sequential circuit- Flipflops -Operation and Excitation Tables.

Triggering of FF . Analysis and design of clocked sequential circuits-Design-Moor

/Mealy models, state minimization ,state assignment , circuit implementation-

Registers-Counters

INTRODUCTION

In combinational logic circuits, the outputs at any instant of time depend

only on the input signals present at that time. For any change in input, the output

occurs immediately.

Combinational Circuit- Block Diagram

In sequential logic circuits, it consists of combinational circuits to which

storage elements are connected to form a feedback path. The storage elements are

devices capable of storing binary information either 1 or 0.

The information stored in the memory elements at any given time defines the

present state of the sequential circuit. The present state and the external circuit

determine the output and the next state of sequential circuits.

Sequential Circuit- Block Diagram

Thus in sequential circuits, the output variables depend not only on the

2

present input variables but also on the past history of input variables.

3

The rotary channel selected knob on an old-fashioned TV is like a

combinational. Its output selects a channel based only on its current input – the

position of the knob. The channel-up and channel-down push buttons on a TV is like

a sequential circuit. The channel selection depends on the past sequence of up/down

pushes.

The comparison between combinational and sequential circuits is given in

table below.

S.No Combinational logic Sequential logic

1

The output variable, at all times

depends on the combination of

input variables.

The output variable depends not only

on the present input but also depend

upon the past history of inputs.

2 Memory unit is not required.
Memory unit is required to store the

past history of input variables.

3 Faster in speed. Slower than combinational circuits.

4 Easy to design. Comparatively harder to design.

5
Eg. Adder, subtractor, Decoder,

Encoders, Magnitude comparator
Eg. Shift registers, Counters

CLASSIFICATION OF LOGIC CIRCUITS

The sequential circuits can be classified depending on the timing of their

signals:

 Synchronous sequential circuits

 Asynchronous sequential circuits.

S.No Synchronous sequential circuits Asynchronous sequential circuits

1 Memory elements are clocked

Flip-Flops.

Memory elements are either unclocked

flip-flops (Latches) or time delay

elements.

2
The change in input signals can

affect memory element upon

activation of clock signal.

The change in input signals can affect

memory element at any instant of

time.

3
The maximum operating speed of

clock depends on time delays

involved.

Because of the absence of clock, it can

operate faster than synchronous

circuits.

4 Easier to design More difficult to design

TRIGGERING OF FLIP-FLOPS

The state of a Flip-Flop is switched by a momentary change in the input signal.

This momentary change is called a trigger and the transition it causes is said to

trigger the Flip-Flop. Clocked Flip-Flops are triggered by pulses. A clock pulse starts

from an initial value of 0, goes momentarily to 1and after a short time, returns to its

initial 0 value.

Latches are controlled by enable signal, and they are level triggered, either

positive level triggered or negative level triggered. The output is free to change

according to the S and R input values, when active level is maintained at the enable

input.

3

4

EDGE TRIGGERED FLIP-FLOPS

Flip-Flops are synchronous bistable devices (has two outputs Q and Q’). In

this case, the term synchronous means that the output changes state only at a

specified point on the triggering input called the clock (CLK), i.e., changes in the

output occur in synchronization with the clock.

An edge-triggered Flip-Flop changes state either at the positive edge (rising

edge) or at the negative edge (falling edge) of the clock pulse and is sensitive to its

inputs only at this transition of the clock. The different types of edge-triggered Flip-

Flops are—

S-R Flip-Flop (Set – Reset)

J-K Flip-Flop (Jack Kilby)

D Flip-Flop (Delay)

T Flip-Flop (Toggle)

Although the S-R Flip-Flop is not available in IC form, it is the basis for the D

and J-K Flip-Flops. Each type can be either positive edge-triggered (no bubble at C

input) or negative edge-triggered (bubble at C input).

The key to identifying an edge- triggered Flip-Flop by its logic symbol is the

small triangle inside the block at the clock (C) input. This triangle is called the

dynamic input indicator.

S-R Flip-Flop

The S and R inputs of the S-R Flip-Flop are called synchronous inputs because

data on these inputs are transferred to the Flip-Flop's output only on the triggering

edge of the clock pulse. The circuit is similar to SR latch except enable signal is

replaced by clock pulse (CLK). On the positive edge of the clock pulse, the circuit

responds to the S and R inputs.

5

SR Flip-Flop

When S is HIGH and R is LOW, the Q output goes HIGH on the triggering

edge of the clock pulse, and the Flip-Flop is SET. When S is LOW and R is HIGH, the

Q output goes LOW on the triggering edge of the clock pulse, and the Flip-Flop is

RESET. When both S and R are LOW, the output does not change from its prior state.

An invalid condition exists when both S and R are HIGH.

CLK S R Qn Qn+1 State

1

1

0

0

0

0

0

1

0

1
No Change (NC)

1

1

0

0

1

1

0

1

0

0
Reset

1

1

1

1

0

0

0

1

1

1
Set

1

1

1

1

1

1

0

1

x

x

Indeterminate

*

Truth table for SR Flip-Flop

The timing diagram of positive edge triggered SR flip-flop is shown below.

Input and output waveforms of SR Flip-Flop

6

Characteristic table and Characteristic equation:

The characteristic table for JK Flip-Flop is shown in the table below. From the

table, K-map for the next state transition (Qn+1) can be drawn and the simplified logic

expression which represents the characteristic equation of JK Flip-Flop can be found.

S R Qn Qn+1

0
0

0
0

0
1

0
1

0
0

1
1

0
1

0
0

1
1

0
0

0
1

1
1

1
1

1
1

0
1

x
x

K-map Simplification:

Characteristic table

Characteristic equation:

Qn+1= S+ R’Qn

J-K Flip-Flop:

JK means Jack Kilby, Texas Instrument (TI) Engineer, who invented IC in 1958.

JK Flip-Flop has two inputs J(set) and K(reset). A JK Flip-Flop can be obtained from

the clocked SR Flip-Flop by augmenting two AND gates as shown below.

JK Flip Flop

7

The data input J and the output Q’ are applied o the first AND gate and its

output (JQ’) is applied to the S input of SR Flip-Flop. Similarly, the data input K and

the output Q are applied to the second AND gate and its output (KQ) is applied to

the R input of SR Flip-Flop.

J= K= 0

When J=K= 0, both AND gates are disabled. Therefore clock pulse have no

effect, hence the Flip-Flop output is same as the previous output.

J= 0, K= 1

When J= 0 and K= 1, AND gate 1 is disabled i.e., S= 0 and R= 1. This condition

will reset the Flip-Flop to 0.

J= 1, K= 0

When J= 1 and K= 0, AND gate 2 is disabled i.e., S= 1 and R= 0. Therefore the

Flip-Flop will set on the application of a clock pulse.

J= K= 0

When J=K= 1, it is possible to set or reset the Flip-Flop. If Q is High, AND

gate 2 passes on a reset pulse to the next clock. When Q is low, AND gate 1 passes on

a set pulse to the next clock. Eitherway, Q changes to the complement of the last

state i.e., toggle. Toggle means to switch to the opposite state.

Truth table:

CLK
Inputs Output

State
J K Qn+1

1 0 0 Qn No Change

1 0 1 0 Reset

1 1 0 1 Set

1 1 1 Qn’ Toggle

8

The timing diagram of negative edge triggered JK flip-flop is shown below.

Input and output waveforms of JK Flip-Flop

Characteristic table and Characteristic equation:

The characteristic table for JK Flip-Flop is shown in the table below. From the

table, K-map for the next state transition (Qn+1) can be drawn and the simplified logic

expression which represents the characteristic equation of JK Flip-Flop can be found.

Qn J K Qn+1

0
0
0

0
1
1
1
1

0
0
1

1
0
0
1
1

0
1
0

1
0
1
0
1

0
0
1

1
1
0
1
0

Characteristic table

K-map Simplification:

Characteristic equation:

Qn+1= JQ’+ K’Q

9

D Flip-Flop:

Like in D latch, in D Flip-Flop the basic SR Flip-Flop is used with

complemented inputs. The D Flip-Flop is similar to D-latch except clock pulse is

used instead of enable input.

D Flip-Flop

To eliminate the undesirable condition of the indeterminate state in the RS Flip-

Flop is to ensure that inputs S and R are never equal to 1 at the same time. This is

done by D Flip-Flop. The D (delay) Flip-Flop has one input called delay input and clock

pulse input.

The D Flip-Flop using SR Flip-Flop is shown below.

Truth Table:

The truth table of D Flip-Flop is given below.

Clock D Qn+1 State

1

1

0

0

1

x

0

1

Qn

Reset

Set

No Change

Truth table for D Flip-Flop

10

The timing diagram of positive edge triggered D flip-flop is shown below.

Input and output waveforms of clocked D Flip-Flop

Looking at the truth table for D Flip-Flop we can realize that Qn+1 function

follows the D input at the positive going edges of the clock pulses.

Characteristic table and Characteristic equation:

The characteristic table for D Flip-Flop shows that the next state of the Flip-

Flop is independent of the present state since Qn+1 is equal to D. This means that an

input pulse will transfer the value of input D into the output of the Flip-Flop

independent of the value of the output before the pulse was applied.

The characteristic equation is derived from K-map.

Qn D Qn+1

0

0

1

1

0

1

0

1

0

1

0

1

Characteristic table

K-map Simplification:

Characteristic equation:

Qn+1= D.

11

T Flip-Flop

The T (Toggle) Flip-Flop is a modification of the JK Flip-Flop. It is obtained

from JK Flip-Flop by connecting both inputs J and K together, i.e., single input.

Regardless of the present state, the Flip-Flop complements its output when the clock

pulse occurs while input T= 1.

T Flip-Flop

When T= 0, Qn+1= Qn, ie., the next state is the same as the present state and no

change occurs.

When T= 1, Qn+1= Qn’,ie., the next state is the complement of the present state.

Truth Table:

The truth table of T Flip-Flop is given below.

T Qn+1 State

0

1

Qn

Qn’

No Change

Toggle

Truth table for T Flip-Flop

Characteristic table and Characteristic equation:

The characteristic table for T Flip-Flop is shown below and characteristic

equation is derived using K-map.

12

Qn T Qn+1

0

0

1

1

0

1

0

1

0

1

1

0

K-map Simplification:

Characteristic equation:
Qn+1= TQn’+ T’Qn

Master-Slave JK Flip-Flop

A master-slave Flip-Flop consists of clocked JK flip-flop as a master and

clocked SR flip-flop as a slave. The output of the master flip-flop is fed as an input to

the slave flip-flop. Clock signal is connected directly to the master flip-flop, but is

connected through inverter to the slave flip-flop. Therefore, the information present

at the J and K inputs is transmitted to the output of master flip-flop on the positive

clock pulse and it is held there until the negative clock pulse occurs, after which it is

allowed to pass through to the output of slave flip-flop. The output of the slave flip-

flop is connected as a third input of the master JK flip-flop.

Logic diagram

When J= 1 and K= 0, the master sets on the positive clock. The high Y

output of the master drives the S input of the slave, so at negative clock, slave sets,

copying the action of the master.

13

When J= 0 and K= 1, the master resets on the positive clock. The high Y’

output of the master goes to the R input of the slave. Therefore, at the negative clock

slave resets, again copying the action of the master.

When J= 1 and K= 1, master toggles on the positive clock and the output of

master is copied by the slave on the negative clock. At this instant, feedback inputs

to the master flip-flop are complemented, but as it is negative half of the clock pulse,

master flip-flop is inactive. This prevents race around condition.

The clocked master-slave J-K Flip-Flop using NAND gate is shown below.

Master-Slave JK Flip-Flop

The input and output waveforms of master-slave JK flip-flop is shown below.

Input and output waveform of master-slave flip-flop

14

APPLICATION TABLE (OR) EXCITATION TABLE:

The characteristic table is useful for analysis and for defining the operation

of the Flip-Flop. It specifies the next state (Qn+1) when the inputs and present state

are known.

The excitation or application table is useful for design process. It is used to

find the Flip-Flop input conditions that will cause the required transition, when the

present state (Qn) and the next state (Qn+1) are known.

SR Flip- Flop:

Present

State

Next

State
Inputs Inputs

Qn Qn+1 S R S R

0 0 0 0
0 x

0 0 0 1

0 1 1 0 1 0

1 0 0 1 0 1

1 1 0 0
x 0

1 1 1 0

Modified Table

Characteristic Table

Present

State

Next

State
Inputs

Qn Qn+1 S R

0 0 0 x

0 1 1 0

1 0 0 1

1 1 x 0

Excitation Table

Present

State
Inputs Next State

Qn S R Qn+1

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 x

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 x

15

Present

State
Inputs

Next

State

Qn J K Qn+1

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Present

State

Next

State
Inputs Inputs

Qn Qn+1 J K J K

0 0 0 0
0 x

0 0 0 1

0 1 1 0
1 x

0 1 1 1

1 0 0 1
x 1

1 0 1 1

1 1 0 0
x 0

1 1 1 0

The above table presents the excitation table for SR Flip-Flop. It consists of

present state (Qn), next state (Qn+1) and a column for each input to show how the

required transition is achieved.

There are 4 possible transitions from present state to next state. The required

Input conditions for each of the four transitions are derived from the information

available in the characteristic table. The symbol ‘x’ denotes the don’t care condition;

it does not matter whether the input is 0 or 1.

JK Flip-Flop:

Characteristic Table Modified Table

Present

State

Next

State
Inputs

Qn Qn+1 J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

Excitation Table

16

Present

State
Input

Next

State

Qn D Qn+1

0

0

1

1

0

1

0

1

0

1

0

1

Present

State

Next

State
Input

Qn Qn+1 D

0 0 0

0 1 1

1 0 0

1 1 1

D Flip-Flop:

Characteristic Table

T Flip-Flop:

Excitation Table

Characteristic Table Excitation Table

REALIZATION OF ONE FLIP-FLOP USING OTHER FLIP-FLOPS

It is possible to convert one Flip-Flop into another Flip-Flop with some

additional gates or simply doing some extra connection. The realization of one Flip-

Flop using other Flip-Flops is implemented by the use of characteristic tables and

excitation tables. Let us see few conversions among Flip-Flops.

SR Flip-Flop to D Flip-Flop

SR Flip-Flop to JK Flip-Flop

SR Flip-Flop to T Flip-Flop

JK Flip-Flop to T Flip-Flop

JK Flip-Flop to D Flip-Flop

D Flip-Flop to T Flip-Flop

T Flip-Flop to D Flip-Flop

Present

State

Next

State
Input

Qn Qn+1 T

0 0 0

0 1 1

1 0 1

1 1 0

Present

State
Input

Next

State

Qn T Qn+1

0

0

1

1

0

1

0

1

0

1

1

0

17

SR Flip-Flop to D Flip-Flop:

 Write the characteristic table for required Flip-Flop (D Flip-Flop).

 Write the excitation table for given Flip-Flop (SR Flip-Flop).

 Determine the expression for given Flip-Flop inputs (S & R) by using K- map.

 Draw the Flip-Flop conversion logic diagram to obtain the required flip- flop

(D Flip-Flop) by using the above obtained expression.

The excitation table for the above conversion is

Required Flip-Flop
(D)

Given Flip-Flop
(SR)

Input Present state Next state Flip-Flop Inputs

D Qn Qn+1 S R

0 0 0 0 x
0 1 0 0 1
1 0 1 1 0
1 1 1 x 0

SR to D Flip-Flop

SR Flip-Flop to JK Flip-Flop

The excitation table for the above conversion is, Qn

Inputs Present state Next state Flip-Flop Inputs

J K Qn Qn+1 S R

0 0 0 0 0 x

0 0 1 1 x 0
0 1 0 0 0 x
0 1 1 0 0 1
1 0 0 1 1 0
1 0 1 1 x 0
1 1 0 1 1 0
1 1 1 0 0 1

18

SR to JK Flip-Flop

SR Flip-Flop to T Flip-Flop

The excitation table for the above conversion is

Input Present state Next state
Flip-Flop

Inputs

T Qn Qn+1 S R

0 0 0 0 x
0 1 1 x 0
1 0 1 1 0
1 1 0 0 1

SR to T Flip-Flop

19

JK Flip-Flop to T Flip-Flop

The excitation table for the above conversion is

Input Present state Next state Flip-Flop Inputs

T Qn Qn+1 J K

0 0 0 0 x
0 1 1 x 0
1 0 1 1 x
1 1 0 x 1

JK to T Flip-Flop

JK Flip-Flop to D Flip-Flop

The excitation table for the above conversion is

Input Present state Next state Flip-Flop Inputs

D Qn Qn+1 J K

0 0 0 0 x
0 1 0 x 1
1 0 1 1 x
1 1 1 x 0

JK to D Flip-Flop

20

D Flip-Flop to T Flip-Flop

The excitation table for the above conversion is

Input Present state Next state Flip-Flop Input

T Qn Qn+1 D

0
0
1
1

0
1
0
1

0
1
1
0

0
1
1
0

D to T Flip-Flop

T Flip-Flop to D Flip-Flop

The excitation table for the above conversion is

Input Present state Next state
Flip-Flop

Input

D Qn Qn+1 T

0
0
1
1

0
1
0
1

0
0
1
1

0
1
1
0

T to D Flip-Flop

21

CLASSIFICATION OF SYNCHRONOUS SEQUENTIAL CIRCUIT:

In synchronous or clocked sequential circuits, clocked Flip-Flops are used as

memory elements, which change their individual states in synchronism with the

periodic clock signal. Therefore, the change in states of Flip-Flop and change in state

of the entire circuits occur at the transition of the clock signal.

The synchronous or clocked sequential networks are represented by two models.

Moore model: The output depends only on the present state of the Flip-Flops.

Mealy model: The output depends on both the present state of the Flip-Flops

and on the inputs.

Moore model:

In the Moore model, the outputs are a function of the present state of the Flip-

Flops only. The output depends only on present state of Flip-Flops, it appears only

after the clock pulse is applied, i.e., it varies in synchronism with the clock input.

Mealy model:

Moore model

In the Mealy model, the outputs are functions of both the present state of the

Flip-Flops and inputs.

Mealy model

22

Difference between Moore and Mealy model

S.No Moore model Mealy model

1 Its output is a function of present

state only.

Its output is a function of present state

as well as present input.

2 An input change does not affect the

output.

Input changes may affect the output of

the circuit.

3 It requires more number of states

for implementing same function.

It requires less number of states for

implementing same function.

ANALYSIS OF SYNCHRONOUS SEQUENTIAL CIRCUIT:

ANALYSIS PROCEDURE:

The synchronous sequential circuit analysis is summarizes as given below:

1. Assign a state variable to each Flip-Flop in the synchronous sequential circuit.

2. Write the excitation input functions for each Flip-Flop and also write the

Moore/ Mealy output equations.

3. Substitute the excitation input functions into the bistable equations for the

Flip-Flops to obtain the next state output equations.

4. Obtain the state table and reduced form of the state table.

5. Draw the state diagram by using the second form of the state table.

ANALYSIS OF MEALY MODEL:

1. A sequential circuit has two JK Flip-Flops A and B, one input (x) and one output

(y). the Flip-Flop input functions are,

JA= B+ x JB= A’+ x’

KA= 1 KB= 1

and the circuit output function, Y= xA’B.

a) Draw the logic diagram of the Mealy circuit,

b) Tabulate the state table,

c) Draw the state diagram.

23

Logic Diagram:

State table:

Present state Input Flip-Flop Inputs Next state Output

A B x JA= B+ x KA= 1 JB= A’+ x’ KB= 1 A(t+1) B(t+1) Y= xA’B

0 0 0 0 1 1 1 0 1 0
0 0 1 1 1 1 1 1 1 0
0 1 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0 1

1 0 0 0 1 1 1 0 1 0
1 0 1 1 1 0 1 0 0 0
1 1 0 1 1 1 1 0 0 0
1 1 1 1 1 0 1 0 0 0

Reduced State Table:

Present state
Next state Output

x= 0 x= 1 x= 0 x= 1

A B A B A B y y

0
0
1
1

0
1
0
1

0
1
0
0

1
0
1
0

1
1
0
0

1
0
0
0

0
0
0
0

0
1
0
0

24

State Diagram:

State Diagram

2. A sequential circuit with two ‘D’ Flip-Flops A and B, one input (x) and one

output (y). The Flip-Flop input functions are:

DA= Ax+ Bx

DB= A’x

and the circuit output function is, Y= (A+ B) x’.

(a) Draw the logic diagram of the circuit,

(b) Tabulate the state table,

(c) Draw the state diagram.

Soln:

25

State Table:

Present state Input Flip-Flop Inputs Next state Output

A B x
DA=

Ax+Bx
DB= A’x A(t+1) B(t+1) Y= (A+B)x’

0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0
0 1 0 0 0 0 0 1
0 1 1 1 1 1 1 0

1 0 0 0 0 0 0 1
1 0 1 1 0 1 0 0
1 1 0 0 0 0 0 1
1 1 1 1 0 1 0 0

Present state
Next state Output

x= 0 x= 1 x= 0 x= 1

A B A B A B Y Y

0
0

1
1

0
1

0
1

0
0

0
0

0
0

0
0

0
1

1
1

1
1

0
0

0
1

1
1

0
0

0
0

Second form of state table

State Diagram:

3. A sequential circuit has two JK Flip-Flop A and B. the Flip-Flop input functions

are: JA= B JB= x’

KA= Bx’ KB= A x.

(a) Draw the logic diagram of the circuit,

(b) Tabulate the state table,

(c) Draw the state diagram.

Soln:

26

Logic diagram:

The output function is not given in the problem. The output of the Flip-Flops

may be considered as the output of the circuit.

State table:

Prese
nt state

Input Flip-Flop Inputs Next state

A B x JA= B KA= Bx’ JB= x’ KB= Ax A(t+1) B(t+1)

0 0 0 0 0 1 0 0 1

0 0 1 0 0 0 1 0 0
0 1 0 1 1 1 0 1 1
0 1 1 1 0 0 1 1 0

1 0 0 0 0 1 1 1 1
1 0 1 0 0 0 0 1 0
1 1 0 1 1 1 1 0 0
1 1 1 1 0 0 0 1 1

Present state
Next state

X= 0 X= 1

A B A B A B

0 0 0 1 0 0
0 1 1 1 1 0
1 0 1 1 1 0
1 1 0 0 1 1

27

State Diagram:

4. A sequential circuit has two JK Flop-Flops A and B, two inputs x and y and

one output z. The Flip-Flop input equation and circuit output equations are

JA = Bx + B' y' KA = B' xy'

JB = A' x KB = A+ xy'

z = Ax' y' + Bx' y'

(a) Draw the logic diagram of the circuit

(b) Tabulate the state table.

(c) Derive the state equation.

Soln:

Logic diagram:

28

State table:

To obtain the next-state values of a sequential circuit with JK Flip-Flop, use

the JK Flip-Flop characteristic table,

Present state Input Flip-Flop Inputs Next state Output

A B x y
JA=

Bx+B’y’
KA=
B’xy’

JB=
A’x

KB=
A+xy’

A(t+1) B(t+1) z

0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 1 1 1 1 1 0
0 0 1 1 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 1 1 1 0
0 1 1 1 1 0 1 0 1 1 0

1 0 0 0 1 0 0 1 1 0 1
1 0 0 1 0 0 0 1 1 0 0
1 0 1 0 1 1 0 1 0 0 0
1 0 1 1 0 0 0 1 1 0 0
1 1 0 0 0 0 0 1 1 0 1
1 1 0 1 0 0 0 1 1 0 0
1 1 1 0 1 0 0 1 1 0 0
1 1 1 1 1 0 0 1 1 0 0

State Equation:

29

5. Analyze the synchronous Mealy machine and obtain its state diagram.

Soln:

The given synchronous Mealy machine consists of two D Flip-Flops, one inputs and

one output. The Flip-Flop input functions are,

DA= Y1’Y2X’

DB= X+ Y1’Y2

The circuit output function is, Z= Y1Y2X.

State Table:

Present state Input Flip-Flop Inputs Next state Output

Y1 Y2 X DA= Y1’Y2X’ DB= X+ Y1’Y2 Y1 (t+1) Y2 (t+1) Z= Y1Y2X

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0

1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0
1 1 1 0 1 0 1 1

30

Reduced State Table:

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

Y1 Y2 Y1 Y2 Y1 Y2 Z Z

0
0
1
1

0
1
0
1

0
1
0
0

0
1
0
0

0
0
0
0

1
1
1
1

0
0
0
0

0
0
0
1

Second form of state table

State Diagram:

ANALYSIS OF MOORE MODEL:

6. Analyze the synchronous Moore circuit and obtain its state diagram.

31

Soln:
Using the assigned variable Y1 and Y2 for the two JK Flip-Flops, we can write

the four excitation input equations and the Moore output equation as follows:

JA= Y2X ; KA= Y2’

JB= X ; KB= X’ and output function, Z= Y1Y2’

State table:

Present state Input Flip-Flop Inputs Next state Output

Y1 Y2 X JA= Y2X KA= Y2’ JB= X KB= X’ Y1 (t+1) Y2 (t+1) Z= Y1Y2’

0 0 0 0 1 0 1 0 0 0
0 0 1 0 1 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0
0 1 1 1 0 1 0 1 1 0

1 0 0 0 1 0 1 0 0 1

1 0 1 0 1 1 0 0 1 1
1 1 0 0 0 0 1 1 0 0
1 1 1 1 0 1 0 1 1 0

Present state
Next state Output

X= 0 X= 1
Y

Y1 Y2 Y1 Y2 Y1 Y2

0
0
1
1

0
1
0
1

0
0
0
1

0
0
0
0

0
1
0
1

1
1
1
1

0
0
1
0

State Diagram:

Here the output depends on the present state only and is independent of the

input. The two values inside each circle separated by a slash are for the present state

and output.

32

7. A sequential circuit has two T Flip-Flop A and B. The Flip-Flop input functions

are:

TA= Bx TB= x

y= AB

(a) Draw the logic diagram of the circuit,

(b) Tabulate the state table,

(c) Draw the state diagram.

Soln:

Logic diagram:

State table:

Present state Input Flip-Flop Inputs Next state Output

A B x TA= Bx TB= x A (t+1) B (t+1) y= AB

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0
0 1 0 0 0 0 1 0
0 1 1 1 1 1 0 0

1 0 0 0 0 1 0 0
1 0 1 0 1 1 1 0
1 1 0 0 0 1 1 1
1 1 1 1 1 0 0 1

33

Reduced State Table:

Present state
Next state Output

x= 0 x= 1 x= 0 x= 1

A B A B A B y y

0
0
1
1

0
1
0
1

0
0
1
1

0
1
0
1

0
1
1
0

1
0
1
0

0
0
0
1

0
0
0
1

Second form of state table

State Diagram:

STATE REDUCTION/ MINIMIZATION

The state reduction is used to avoid the redundant states in the sequential

circuits. The reduction in redundant states reduces the number of required Flip-

Flops and logic gates, reducing the cost of the final circuit.

The two states are said to be redundant or equivalent, if every possible set of

inputs generate exactly same output and same next state. When two states are

equivalent, one of them can be removed without altering the input-output

relationship.

Since ‘n’ Flip-Flops produced 2n state, a reduction in the number of states may

result in a reduction in the number of Flip-Flops.

The need for state reduction or state minimization is explained with one

example.

34

Examples:

1. Reduce the number of states in the following state diagram and draw the

reduced state diagram.

State diagram

Step 1: Determine the state table for given state diagram

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

a b c 0 0

b d e 1 0

c c d 0 1

d a d 0 0

e c d 0 1

Step 2: Find equivalent states

State table

From the above state table c and e generate exactly same next state and same

output for every possible set of inputs. The state c and e go to next states c and d and

have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state e can be removed

and replaced by c. The final reduced state table is shown below.

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

a b c 0 0

b d c 1 0

c c d 0 1

d a d 0 0

Reduced state table

35

Step 3: Draw state diagram

Reduced state diagram

2. Reduce the number of states in the following state table and tabulate the reduced

state table.

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f g f 0 1

g a f 0 1

Soln:

From the above state table e and g generate exactly same next state and same

output for every possible set of inputs. The state e and g go to next states a and f and

have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state g can be removed

and replaced by e.

The reduced state table-1 is shown below.

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f e f 0 1

36

Now states d and f are equivalent. Both states go to the same next state (e, f) and

have same output (0, 1). Therefore one state can be removed; f is replaced by d.

The final reduced state table-2 is shown below.

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c d 0 0

c a d 0 0

d e d 0 1

e a d 0 1

Reduced state table-2

Thus 7 states are reduced into 5 states.

3. Determine a minimal state table equivalent furnished below

Present state
Next state

X= 0 X= 1

1 1, 0 1, 0

2 1, 1 6, 1

3 4, 0 5, 0

4 1, 1 7, 0

5 2, 0 3, 0

6 4, 0 5, 0

7 2, 0 3, 0

Soln:

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

1 1 1 0 0

2 1 6 1 1

3 4 5 0 0

4 1 7 1 0

5 2 3 0 0

6 4 5 0 0

7 2 3 0 0

From the above state table, 5 and 7 generate exactly same next state and same

output for every possible set of inputs. The state 5 and 7 go to next states 2 and 3 and

have outputs 0 and 0 for x=0 and x=1 respectively. Therefore state 7 can be removed

and replaced by 5.

37

Similarly, 3 and 6 generate exactly same next state and same output for every

possible set of inputs. The state 3 and 6 go to next states 4 and 5 and have outputs 0

and 0 for x=0 and x=1 respectively. Therefore state 6 can be removed and replaced

by 3. The final reduced state table is shown below.

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

1 1 1 0 0

2 1 3 1 1

3 4 5 0 0

4 1 5 1 0

5 2 3 0 0

Reduced state table

Thus 7 states are reduced into 5 states.

4. Minimize the following state table.

Present state
Next state

X= 0 X= 1

A D, 0 C, 1

B E, 1 A, 1

C H, 1 D, 1

D D, 0 C, 1

E B, 0 G, 1

F H, 1 D, 1

G A, 0 F, 1

H C, 0 A, 1

I G, 1 H,1

Soln:

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

A D C 0 1

B E A 1 1

C H D 1 1

D D C 0 1

E B G 0 1

F H D 1 1

G A F 0 1

H C A 0 1

I G H 1 1

38

From the above state table, A and D generate exactly same next state and

same output for every possible set of inputs. The state A and D go to next states D

and C and have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state D can

be removed and replaced by A. Similarly, C and F generate exactly same next state

and same output for every possible set of inputs. The state C and F go to next states

H and D and have outputs 1 and 1 for x=0 and x=1 respectively. Therefore state F

can be removed and replaced by C.

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

A A C 0 1

B E A 1 1

C H A 1 1

E B G 0 1

G A C 0 1

H C A 0 1

I G H 1 1
Reduced state table-1

From the above reduced state table-1, A and G generate exactly same next

state and same output for every possible set of inputs. The state A and G go to next

states A and C and have outputs 0 and 1 for x=0 and x=1 respectively. Therefore

state G can be removed and replaced by A.

The final reduced state table-2 is shown below.

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

A A C 0 1

B E A 1 1

C H A 1 1

E B A 0 1

H C A 0 1

I A H 1 1
Reduced state table-2

Thus 9 states are reduced into 6 states.

39

5. Reduce the following state diagram.

Soln:

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f g f 0 1

g a f 0 1

State table

From the above state table e and g generate exactly same next state and same

output for every possible set of inputs. The state e and g go to next states a and f and

have outputs 0 and 1 for x=0 and x=1 respectively. Therefore state g can be removed

and replaced by e. The reduced state table-1 is shown below.

Present state Next state Output

X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f e f 0 1

Reduced state table-1

Now states d and f are equivalent. Both states go to the same next state (e, f)

and have same output (0, 1). Therefore one state can be removed; f is replaced by d.

40

The final reduced state table-2 is shown below.

Present state Next state Output

X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c d 0 0

c a d 0 0

d e d 0 1

e a d 0 1

Reduced state table-2

Thus 7 states are reduced into 5 states.

The state diagram for the reduced state table-2 is,

Reduced state diagram

DESIGN OF SYNCHRONOUS SEQUENTIAL CIRCUITS:

A synchronous sequential circuit is made up of number of Flip-Flops and

combinational gates. The design of circuit consists of choosing the Flip-Flops and

then finding a combinational gate structure together with the Flip-Flops. The

number of Flip-Flops is determined from the number of states needed in the circuit.

The combinational circuit is derived from the state table.

Design procedure:

1. The given problem is determined with a state diagram.

2. From the state diagram, obtain the state table.

3. The number of states may be reduced by state reduction methods (if applicable).

41

4. Assign binary values to each state (Binary Assignment) if the state table

contains letter symbols.

5. Determine the number of Flip-Flops and assign a letter symbol (A, B, C,…) to

each.

6. Choose the type of Flip-Flop (SR, JK, D, T) to be used.

7. From the state table, circuit excitation and output tables.

8. Using K-map or any other simplification method, derive the circuit output

functions and the Flip-Flop input functions.

9. Draw the logic diagram.

The type of Flip-Flop to be used may be included in the design specifications

or may depend what is available to the designer. Many digital systems are

constructed with JK Flip-Flops because they are the most versatile available. The

selection of inputs is given as follows.

Flip-Flop Application

JK

D

T

General Applications

Applications requiring transfer of data

(Ex: Shift Registers)

Application involving complementation

(Ex: Binary Counters)

42

3.10.2 Excitation Tables:
Before going to the design examples for the clocked synchronous sequential

circuits we revise Flip-Flop excitation tables.

Present
State

Next
State

Inputs

Qn Qn+1 S R

0 0 0 x
0 1 1 0
1 0 0 1
1 1 x 0

Excitation table for SR Flip-Flop

Present
State

Next
State

Inputs

Qn Qn+1 J K

0 0 0 x
0 1 1 x
1 0 x 1
1 1 x 0

Excitation table for JK Flip-Flop

Present
State

Next
State

Input

Qn Qn+1 T

0
0
1
1

0
1
0
1

0
1
1
0

Excitation table for T Flip-Flop

Present
State

Next
State

Input

Qn Qn+1 D

0
0

1
1

0
1

0
1

0
1

0
1

Excitation table for D Flip-Flop

43

Problems

1. Design a clocked sequential machine using JK Flip-Flops for the state diagram

shown in the figure. Use state reduction if possible. Make proper state

assignment.

Soln:

State Table:

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c b 0 0

c a b 0 1

d a b 0 0

Reduced State Table:

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

a a b 0 0

b c b 0 0

c a b 0 1

Binary Assignment:

Now each state is assigned with binary values. Since there are three states,

number of Flip-Flops required is two and 2 binary numbers are assigned to the states.

a= 00; b= 0; and c= 10.

Reduced State Diagram

44

Excitation Table:

Excitation table for JK Flip-Flop

Input
Present

state
Next state Flip-Flop Inputs Output

X A B A B JA KA JB KB Y

0 0 0 0 0 0 x 0 x 0
1 0 0 0 1 0 x 1 x 0
0 0 1 1 0 1 x x 1 0
1 0 1 0 1 0 x x 0 0
0 1 0 0 0 x 1 0 x 0
1 1 0 0 1 x 1 1 x 1
0 1 1 x x x x x x x
1 1 1 x x x x x x x

K-map Simplification:

With these Flip-Flop input functions and circuit output function we can draw

the logic diagram as follows.

Present State Next State Inputs

Qn Qn+1 J K

0 0 0 x
0 1 1 x
1 0 x 1
1 1 x 0

45

2. Design a clocked sequential machine using T Flip-Flops for the following state

diagram. Use state reduction if possible. Also use straight binary state

assignment.

Soln:

State Table:

Present state
Next state Output

X= 0 X= 1 X= 0 X= 1

a a b 0 0

b d c 0 0

c a b 1 0

d b a 1 1

Even though a and c are having same next states for input X=0 and X=1, as

the outputs are not same state reduction is not possible.

46

State Assignment:

Use straight binary assignments as a= 00, b= 01, c= 10 and d= 11, the

transition table is,

Input Present state Next state
Flip-Flop

Inputs
Output

X A B A B TA TB Y

0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 1 0 0 0 1 0 1
0 1 1 0 1 1 0 1
1 0 0 0 1 0 1 0
1 0 1 1 0 1 1 0
1 1 0 0 1 1 1 0
1 1 1 0 0 1 1 1

K-map simplification:

With these Flip-Flop input functions and circuit output function we can draw

the logic diagram as follows.

Logic Diagram:

47

SHIFT REGISTERS:

A register is simply a group of Flip-Flops that can be used to store a binary

number. There must be one Flip-Flop for each bit in the binary number. For instance,

a register used to store an 8-bit binary number must have 8 Flip-Flops.

The Flip-Flops must be connected such that the binary number can be entered

(shifted) into the register and possibly shifted out. A group of Flip-Flops connected

to provide either or both of these functions is called a shift register.

The bits in a binary number (data) can be removed from one place to another

in either of two ways. The first method involves shifting the data one bit at a time in

a serial fashion, beginning with either the most significant bit (MSB) or the least

significant bit (LSB). This technique is referred to as serial shifting. The second

method involves shifting all the data bits simultaneously and is referred to as parallel

shifting.

There are two ways to shift into a register (serial or parallel) and similarly two

ways to shift the data out of the register. This leads to the construction of four basic

register types—

i. Serial in- serial out,

ii. Serial in- parallel out,

iii. Parallel in- serial out,

iv. Parallel in- parallel out.

(i) Serial in- serial out (iii) Parallel in- serial out

(iii) Serial in- parallel out (iv) Parallel in- parallel out

48

Serial-In Serial-Out Shift Register:

The serial in/serial out shift register accepts data serially, i.e., one bit at a time

on a single line. It produces the stored information on its output also in serial form.

Serial-In Serial-Out Shift Register

The entry of the four bits 1010 into the register is illustrated below, beginning

with the right-most bit. The register is initially clear. The 0 is put onto the data input

line, making D=0 for FF0. When the first clock pulse is applied, FF0 is reset, thus

storing the 0.

Next the second bit, which is a 1, is applied to the data input, making D=1 for

FF0 and D=0 for FF1 because the D input of FF1 is connected to the Q0 output. When

the second clock pulse occurs, the 1 on the data input is shifted into FF0, causing FF0

to set; and the 0 that was in FF0 is shifted into FFl.

The third bit, a 0, is now put onto the data-input line, and a clock pulse is

applied. The 0 is entered into FF0, the 1 stored in FF0 is shifted into FFl, and the 0

stored in FF1 is shifted into FF2.

The last bit, a 1, is now applied to the data input, and a clock pulse is applied.

This time the 1 is entered into FF0, the 0 stored in FF0 is shifted into FFl, the 1 stored

in FF1 is shifted into FF2, and the 0 stored in FF2 is shifted into FF3. This completes

the serial entry of the four bits into the shift register, where they can be stored for

any length of time as long as the Flip-Flops have dc power.

To get the data out of the register, the bits must be shifted out serially and

taken off the Q3 output. After CLK4, the right-most bit, 0, appears on the Q3 output.

When clock pulse CLK5 is applied, the second bit appears on the Q3 output.

Clock pulse CLK6 shifts the third bit to the output, and CLK7 shifts the fourth bit to

the output. While the original four bits are being shifted out, more bits can be shifted

in. All zeros are shown being shifted out, more bits can be shifted in.

49

Serial-In Parallel-Out Shift Register:

In this shift register, data bits are entered into the register in the same as

serial-in serial-out shift register. But the output is taken in parallel. Once the data are

stored, each bit appears on its respective output line and all bits are available

simultaneously instead of on a bit-by-bit.

Serial-In parallel-Out Shift Register

Parallel-In Serial-Out Shift Register:

In this type, the bits are entered in parallel i.e., simultaneously into their

respective stages on parallel lines.

A 4-bit parallel-in serial-out shift register is illustrated below. There are four

data input lines, X0, X1, X2 and X3 for entering data in parallel into the register.

SHIFT/ LOAD input is the control input, which allows four bits of data to load in

parallel into the register.

Parallel-In Serial-Out Shift Register

50

When SHIFT/LOAD is LOW, gates G1, G2, G3 and G4 are enabled, allowing

each data bit to be applied to the D input of its respective Flip-Flop. When a clock

pulse is applied, the Flip-Flops with D = 1 will set and those with D = 0 will reset,

thereby storing all four bits simultaneously.

When SHIFT/LOAD is HIGH, gates G1, G2, G3 and G4 are disabled and gates

G5, G6 and G7 are enabled, allowing the data bits to shift right from one stage to the

next. The OR gates allow either the normal shifting operation or the parallel data-

entry operation, depending on which AND gates are enabled by the level on the

SHIFT/LOAD input.

Parallel-In Parallel-Out Shift Register:

In this type, there is simultaneous entry of all data bits and the bits appear on

parallel outputs simultaneously.

Parallel-In Parallel-Out Shift Register

UNIVERSAL SHIFT REGISTERS:

If the register has shift and parallel load capabilities, then it is called a shift

register with parallel load or universal shift register. Shift register can be used for

converting serial data to parallel data, and vice-versa. If a parallel load capability is

added to a shift register, the data entered in parallel can be taken out in serial fashion

by shifting the data stored in the register.

51

The functions of universal shift register are:

1. A clear control to clear the register to 0.

2. A clock input to synchronize the operations.

3. A shift-right control to enable the shift right operation and the serial input

and output lines associated with the shift right.

4. A shift-left control to enable the shift left operation and the serial input and

output lines associated with the shift left.

5. A parallel-load control to enable a parallel transfer and the n input lines

associated with the parallel transfer.

6. ‘n’ parallel output lines.

7. A control line that leaves the information in the register unchanged even

though the clock pulses re continuously applied.

4-Bit Universal Shift Register

It consists of four D-Flip-Flops and four 4 input multiplexers (MUX). S0 and S1

are the two selection inputs connected to all the four multiplexers. These two

selection inputs are used to select one of the four inputs of each multiplexer.

52

The input 0 in each MUX is selected when S1S0= 00 and input 1 is selected

when S1S0= 01. Similarly inputs 2 and 3 are selected when S1S0= 10 and S1S0= 11

respectively. The inputs S1 and S0 control the mode of the operation of the register.

When S1S0= 00, the present value of the register is applied to the D-inputs of

the Flip-Flops. This is done by connecting the output of each Flip-Flop to the 0 input

of the respective multiplexer. The next clock pulse transfers into each Flip-Flop, the

binary value is held previously, and hence no change of state occurs.

When S1S0= 01, terminal 1 of the multiplexer inputs has a path to the D inputs

of the Flip-Flops. This causes a shift-right operation with the lefter serial input

transferred into Flip-Flop FF3.

When S1S0= 10, a shift-left operation results with the right serial input going

into Flip-Flop FF1.

Finally when S1S0= 11, the binary information on the parallel input lines (I1, I2,

I3 and I4) are transferred into the register simultaneously during the next clock pulse.

The function table of bi-directional shift register with parallel inputs and

parallel outputs is shown below.

Mode Control
Operation

S1 S0

0

0

1

1

0

1

0

1

No change

Shift-right

Shift-left

Parallel load

BI-DIRECTION SHIFT REGISTERS:

A bidirectional shift register is one in which the data can be shifted either left

or right. It can be implemented by using gating logic that enables the transfer of a

data bit from one stage to the next stage to the right or to the left depending on the

level of a control line.

A 4-bit bidirectional shift register is shown below. A HIGH on the

RIGHT/LEFT control input allows data bits inside the register to be shifted to the

right, and a LOW enables data bits inside the register to be shifted to the left.

53

When the RIGHT/LEFT control input is HIGH, gates G1, G2, G3 and G4 are

enabled, and the state of the Q output of each Flip-Flop is passed through to the D

input of the following Flip-Flop. When a clock pulse occurs, the data bits are shifted

one place to the right.

When the RIGHT/LEFT control input is LOW, gates G5, G6, G7 and G8 are

enabled, and the Q output of each Flip-Flop is passed through to the D input of the

preceding Flip-Flop. When a clock pulse occurs, the data bits are then shifted one

place to the left.

4-bit bi-directional shift register

SYNCHRONOUS COUNTERS:

Flip-Flops can be connected together to perform counting operations. Such a

group of Flip- Flops is a counter. The number of Flip-Flops used and the way in

which they are connected determine the number of states (called the modulus) and

also the specific sequence of states that the counter goes through during each

complete cycle.

54

Counters are classified into two broad categories according to the way they

are clocked:

Asynchronous counters,

Synchronous counters.

In asynchronous (ripple) counters, the first Flip-Flop is clocked by the external

clock pulse and then each successive Flip-Flop is clocked by the output of the

preceding Flip-Flop.

In synchronous counters, the clock input is connected to all of the Flip-Flops

so that they are clocked simultaneously. Within each of these two categories,

counters are classified primarily by the type of sequence, the number of states, or the

number of Flip-Flops in the counter.

The term ‘synchronous’ refers to events that have a fixed time relationship

with each other. In synchronous counter, the clock pulses are applied to all Flip-

Flops simultaneously. Hence there is minimum propagation delay.

S.No Asynchronous (ripple) counter Synchronous counter

1 All the Flip-Flops are not clocked

simultaneously.

All the Flip-Flops are clocked

simultaneously.

2 The delay times of all Flip-Flops

are added. Therefore there is

considerable propagation delay.

There is minimum propagation delay.

3 Speed of operation is low Speed of operation is high.

4 Logic circuit is very simple even

for more number of states.

Design involves complex logic circuit

as number of state increases.

5 Minimum numbers of logic

devices are needed.

The number of logic devices is more

than ripple counters.

6 Cheaper than synchronous

counters.

Costlier than ripple counters.

2-Bit Synchronous Binary Counter

In this counter the clock signal is connected in parallel to clock inputs of both

the Flip-Flops (FF0 and FF1). The output of FF0 is connected to J1 and K1 inputs of the

second Flip-Flop (FF1).

55

2-Bit Synchronous Binary Counter

Assume that the counter is initially in the binary 0 state: i.e., both Flip-Flops

are RESET. When the positive edge of the first clock pulse is applied, FF0 will toggle

because J0= k0= 1, whereas FF1 output will remain 0 because J1= k1= 0. After the first

clock pulse Q0=1 and Q1=0.

When the leading edge of CLK2 occurs, FF0 will toggle and Q0 will go LOW.

Since FF1 has a HIGH (Q0 = 1) on its J1 and K1 inputs at the triggering edge of this

clock pulse, the Flip-Flop toggles and Q1 goes HIGH. Thus, after CLK2,

Q0 = 0 and Q1 = 1.

When the leading edge of CLK3 occurs, FF0 again toggles to the SET state (Q0

= 1), and FF1 remains SET (Q1 = 1) because its J1 and K1 inputs are both LOW (Q0 = 0).

After this triggering edge, Q0 = 1 and Q1 = 1.

Finally, at the leading edge of CLK4, Q0 and Q1 go LOW because they both

have a toggle condition on their J1 and K1 inputs. The counter has now recycled to its

original state, Q0 = Q1 = 0.

Timing diagram

56

3-Bit Synchronous Binary Counter

A 3 bit synchronous binary counter is constructed with three JK Flip-Flops

and an AND gate. The output of FF0 (Q0) changes on each clock pulse as the counter

progresses from its original state to its final state and then back to its original state.

To produce this operation, FF0 must be held in the toggle mode by constant HIGH,

on its J0 and K0 inputs.

3- Bit Synchronous Binary Counter

The output of FF1 (Q1) goes to the opposite state following each time Q0= 1.

This change occurs at CLK2, CLK4, CLK6, and CLK8. The CLK8 pulse causes the

counter to recycle. To produce this operation, Q0 is connected to the J1 and K1 inputs

of FF1. When Q0= 1 and a clock pulse occurs, FF1 is in the toggle mode and therefore

changes state. When Q0= 0, FF1 is in the no-change mode and remains in its present

state.

The output of FF2 (Q2) changes state both times; it is preceded by the unique

condition in which both Q0 and Q1 are HIGH. This condition is detected by the AND

gate and applied to the J2 and K2 inputs of FF2. Whenever both outputs Q0= Q1= 1,

the output of the AND gate makes the J2= K2= 1 and FF2 toggles on the following

clock pulse. Otherwise, the J2 and K2 inputs of FF2 are held LOW by the AND gate

output, FF2 does not change state.

CLOCK Pulse Q2 Q1 Q0

Initially
1
2
3
4
5
6
7
8 (recycles)

0
0

0
0
1
1

1
1
0

0
0

1
1
0
0

1
1
0

0
1

0
1
0
1

0
1
0

57

Timing diagram

4-Bit Synchronous Binary Counter

This particular counter is implemented with negative edge-triggered Flip-

Flops. The reasoning behind the J and K input control for the first three Flip- Flops is

the same as previously discussed for the 3-bit counter. For the fourth stage, the Flip-

Flop has to change the state when Q0= Q1= Q2= 1. This condition is decoded by AND

gate G2.

4- Bit Synchronous Binary Counter

Therefore, when Q0= Q1= Q2= 1, Flip-Flop FF3 toggles and for all other times it

is in a no-change condition. Points where the AND gate outputs are HIGH are

indicated by the shaded areas.

4-Bit Synchronous Decade Counter: (BCD Counter):

BCD decade counter has a sequence from 0000 to 1001 (9). After 1001 state it

must recycle back to 0000 state. This counter requires four Flip-Flops and AND/OR

logic as shown below.

58

4-Bit Synchronous Decade Counter

 First, notice that FF0 (Q0) toggles on each clock pulse, so the logic equation for

its J0 and K0 inputs is

J0= K0= 1

This equation is implemented by connecting J0 and K0 to a constant HIGH level.

 Next, notice from table, that FF1 (Q1) changes on the next clock pulse each

time Q0 = 1 and Q3 = 0, so the logic equation for the J1 and K1 inputs is

J1= K1= Q0Q3’

 Flip-Flop 2 (Q2) changes on the next clock pulse each time both Q0 = Q1 = 1.

This requires an input logic equation as follows:

J2= K2= Q0Q1

This equation is implemented by ANDing Q0 and Q1 and connecting the gate output

to the J2 and K2 inputs of FF2.

 Finally, FF3 (Q3) changes to the opposite state on the next clock pulse each

time Q0 = 1, Q1 = 1, and Q2 = 1 (state 7), or when Q0 = 1 and Q1 = 1 (state 9).

The equation for this is as follows:

J3= K3= Q0Q1Q2+ Q0Q3

This function is implemented with the AND/OR logic connected to the J3 and K3

inputs of FF3.

59

CLOCK Pulse Q3 Q2 Q1 Q0

Initially
1
2

3
4
5

6
7
8
9

10(recycles)

0
0
0
0
0
0
0
0
1
1
0

0
0
0
0
1
1
1
1
0
0
0

0
0
1
1
0
0
1
1
0
0
0

0
1
0
1
0
1
0
1
0
1
0

The timing diagram for the decade counter is shown below.

Timing diagram

Synchronous UP/DOWN Counter

An up/down counter is a bidirectional counter, capable of progressing in

either direction through a certain sequence. A 3-bit binary counter that advances

upward through its sequence (0, 1, 2, 3, 4, 5, 6, 7) and then can be reversed so that it

goes through the sequence in the opposite direction (7, 6, 5, 4, 3, 2, 1,0) is an

illustration of up/down sequential operation.

The complete up/down sequence for a 3-bit binary counter is shown in table

below. The arrows indicate the state-to-state movement of the counter for both its UP

and its DOWN modes of operation. An examination of Q0 for both the up and down

sequences shows that FF0 toggles on each clock pulse. Thus, the J0 and K0 inputs of

FF0 are,

J0= K0= 1

60

To form a synchronous UP/DOWN counter, the control input (UP/DOWN)

is used to allow either the normal output or the inverted output of one Flip-Flop to

the J and K inputs of the next Flip-Flop. When UP/DOWN= 1, the MOD 8 counter

will count from 000 to 111 and UP/DOWN= 0, it will count from 111 to 000.

When UP/DOWN= 1, it will enable AND gates 1 and 3 and disable AND

gates 2 and 4. This allows the Q0 and Q1 outputs through the AND gates to the J and

K inputs of the following Flip-Flops, so the counter counts up as pulses are applied.

When UP/DOWN= 0, the reverse action takes place.

J1= K1= (Q0.UP)+ (Q0’.DOWN)

J2= K2= (Q0. Q1.UP)+ (Q0’.Q1’.DOWN)

3-bit UP/DOWN Synchronous Counter

61

MODULUS-N-COUNTERS:

The counter with ‘n’ Flip-Flops has maximum MOD number 2n. Find the

number of Flip-Flops (n) required for the desired MOD number (N) using the

equation,

2n ≥ N

(i) For example, a 3 bit binary counter is a MOD 8 counter. The basic counter can

be modified to produce MOD numbers less than 2n by allowing the counter to

skin those are normally part of counting sequence.

n= 3

N= 8

2n = 23= 8= N

(ii) MOD 5 Counter:

2n= N

2n= 5

22= 4 less than N.

23= 8 > N(5)

Therefore, 3 Flip-Flops are required.

(iii) MOD 10 Counter:

2n= N= 10

23= 8 less than N.

24= 16 > N(10).

To construct any MOD-N counter, the following methods can be used.

1. Find the number of Flip-Flops (n) required for the desired MOD number (N)

using the equation,

2n ≥ N.

2. Connect all the Flip-Flops as a required counter.

3. Find the binary number for N.

4. Connect all Flip-Flop outputs for which Q= 1 when the count is N, as inputs to

NAND gate.

5. Connect the NAND gate output to the CLR input of each Flip-Flop.

62

When the counter reaches Nth state, the output of the NAND gate goes LOW,

resetting all Flip-Flops to 0. Therefore the counter counts from 0 through N-1.

For example, MOD-10 counter reaches state 10 (1010). i.e., Q3Q2Q1Q0= 1 0 1 0.

The outputs Q3 and Q1 are connected to the NAND gate and the output of the

NAND gate goes LOW and resetting all Flip-Flops to zero. Therefore MOD-10

counter counts from 0000 to 1001. And then recycles to the zero value.

The MOD-10 counter circuit is shown below.

MOD-10 (Decade) Counter

2.1 SHIFT REGISTER COUNTERS:

A shift register counter is basically a shift register with the serial output

connected back to the serial input to produce special sequences. Two of the most

common types of shift register counters are:

Johnson counter (Shift Counter),

Ring counter,

3.16.1 Johnson counter (Shift Counter):

In a Johnson counter the complement of the output of the last Flip-Flop is

connected back to the D input of the first Flip-Flop. This feedback arrangement

produces a characteristic sequence of states as shown in table below. The 4-bit

sequence has a total of eight states, and that the 5-bit sequence has a total of ten

states. In general, a Johnson counter will produce a modulus of 2n, where ‘n’ is the

number of stages in the counter.

63

4-Bit Johnson Counter

The Q output of each stage is connected to the D input of the next stage

(assuming that D Flip-Flops are used). The complement output of the last stage is

connected back to the D input of the first stage.

Time sequence for a 4-bit Johnson counter

3.16.2 Ring Counters:

The ring counter utilizes one Flip-Flop for each state in its sequence. It has the

advantage that decoding gates are not required. In the case of a l0-bit ring counter,

there is a unique output for each decimal digit.

Ring counter

The output Q0 sets D1 input, Q1 sets D2, Q2 sets D3 and Q3 is fed back to D0.

Because of these conditions, bits are shifted left one position per positive clock edge

64

and fed back to the input. All the Flip-Flops are clocked together. When CLR goes

low then back to high, the output is 0000.

Time sequence for a Ring counter

The first positive clock edge shifts MSB to LSB position and other bits to one

position left so that the output becomes Q= 0010. This process continues on second

and third clock edge so that successive outputs are 0100 and 1000. The fourth

positive clock edge starts the cycle all over again and the output is 0001. Thus the

stored 1 bit follows a circular path (i.e., the stored 1 bits move left through all Flip-

Flops and the final Flip-Flop sends it back to the first Flip-Flop). This action has

given the name of ring counter.

2.2 DESIGN OF COUNTERS:

The procedure for design of counters as follows:

1. Specify the counter sequence and draw a state diagram.

2. Derive a next-state table from the state diagram.

3. Make the state assignment and develop a transition table showing the flip-

flop inputs required.

4. Draw the K-maps for each input of each Flip-Flop.

5. Derive the logic expression for each Flip-Flop input from the K-maps.

6. Implement the expressions with combinational logic and combine with the

Flip-Flops to form the counter.

65

Examples:

1. Using JK Flip-Flops, design a synchronous counter which counts in the

sequence, 000, 001, 010, 011, 100, 101, 110, 111, 000.

Step 1: State Diagram

Step 2: Excitation Table :

Excitation Table for JK Flip-Flop:

Present State Next State Inputs

Qn Qn+1 J K

0 0 0 x
0 1 1 x
1 0 x 1
1 1 x 0

Excitation Table for Counter:

Present State Next State Flip-Flop Inputs

Q2 Q1 Q0 q2 q1 q0 J2 K2 J1 K1 J0 K0

0 0 0 0 0 1 0 x 0 x 1 x

0 0 1 0 1 0 0 x 1 x x 1

0 1 0 0 1 1 0 x x 0 1 x

0 1 1 1 0 0 1 x x 1 x 1

1 0 0 1 0 1 x 0 0 x 1 x

1 0 1 1 1 0 x 0 1 x x 1

1 1 0 1 1 1 x 0 x 0 1 x

1 1 1 0 0 0 x 1 x 1 x 1

Step 3: K-map Simplification

66

Step 4: Logic Diagram

2. Design and explain the working of a synchronous MOD-3 counter.

Soln:

2n ≥ N= 3

22 > 3.

Therefore, 2 Flip-Flops are required.

State Diagram:

67

Excitation Table:

Excitation Table for JK Flip-Flop:

Present State Next State Inputs

Qn Qn+1 J K

0 0 0 x

0 1 1 x
1 0 x 1
1 1 x 0

Excitation Table for Counter:

Present State Next State Flip-Flop Inputs

QB QA QB+1 QA+1 JB KB JA KA

0 0 0 1 0 x 1 x

0 1 1 0 1 x x 1

1 0 0 0 x 1 0 x

K-map Simplification:

Logic Diagram:

68

3. Design a synchronous counter with states 0, 1, 2, 3, 0, 1, ………using JK Flip-

Flops.

Soln:

State Diagram:

Excitation Table for Counter:

Present State Next State Flip-Flop Inputs

QB QA QB+1 QA+1 JB KB JA KA

0 0 0 1 0 x 1 x

0 1 1 0 1 x x 1

1 0 1 1 x 0 1 x

1 1 0 0 x 1 x 1

K-map Simplification:

Logic Diagram:

69

4. Design a MOD-7 synchronous counter using JK Flip-Flops. Write excitation table

and state table.

Soln:

2n ≥ N= 7

23 > 8.

Therefore, 3 Flip-Flops are required.

State Diagram:

Excitation Table:

Excitation Table for JK Flip-Flop:

Present State Next State Inputs

Qn Qn+1 J K

0 0 0 x
0 1 1 x
1 0 x 1
1 1 x 0

Excitation Table for Counter:

Present State Next State Flip-Flop Inputs

QC QB QA QC+1 QB+1 QA+1 JC KC JB KB JA KA

0 0 0 0 0 1 0 x 0 x 1 x

0 0 1 0 1 0 0 x 1 x x 1

0 1 0 0 1 1 0 x x 0 1 x

0 1 1 1 0 0 1 x x 1 x 1

1 0 0 1 0 1 x 0 0 x 1 x

1 0 1 1 1 0 x 0 1 x x 1

1 1 0 0 0 0 x 1 x 1 0 x

70

K-map Simplification:

Logic Diagram:

5. Design a MOD-10 synchronous counter using JK Flip-Flops. Write excitation

table and state table.

Soln:

2n ≥ N= 10

24 > 10.

71

Therefore, 4 Flip-Flops are required.

State Table:

Excitation Table:

Excitation Table for JK Flip-Flop:

Present State Next State Inputs

Qn Qn+1 J K

0 0 0 x

0 1 1 x
1 0 x 1
1 1 x 0

Excitation Table for Counter:

Present State Next State Flip-Flop Inputs

QD QC QB QA QD+1 QC+1 QB+1 QA+1 JD KD JC KC JB KB JA KA

0 0 0 0 0 0 0 1 0 x 0 x 0 x 1 x

0 0 0 1 0 0 1 0 0 x 0 x 1 x x 1

0 0 1 0 0 0 1 1 0 x 0 x x 0 1 x

0 0 1 1 0 1 0 0 0 x 1 x x 1 x 1

0 1 0 0 0 1 0 1 0 x x 0 0 x 1 x

0 1 0 1 0 1 1 0 0 x x 0 1 x x 1

0 1 1 0 0 1 1 1 0 x x 0 x 0 1 x

0 1 1 1 1 0 0 0 1 x x 1 x 1 x 1

1 0 0 0 1 0 0 1 x 0 0 x 0 x 1 x

1 0 0 1 0 0 0 0 x 1 0 x 0 x x 1

72

K-map Simplification:

73

Logic Diagram:

6. Design a synchronous 3-bit gray code up counter with the help of excitation table.

Soln:

Gray code sequence: 000, 001, 011, 010, 110, 111, 101, 100.

State Diagram:

Excitation Table:

Present State Next State Flip-Flop Inputs

QC QB QA QC+1 QB+1 QA+1 JC KC JB KB JA KA

0 0 0 0 0 1 0 x 0 x 1 x

0 0 1 0 1 1 0 x 1 x x 0

0 1 1 0 1 0 0 x x 0 x 1

0 1 0 1 1 0 1 x x 0 0 x

1 1 0 1 1 1 x 0 x 0 1 x

1 1 1 1 0 1 x 0 x 1 x 0

1 0 1 1 0 0 x 0 0 x x 1

1 0 0 0 0 0 x 1 0 x 0 x

74

K-map Simplification:

Logic Diagram:

75

7. Design a 3 bit (MOD 8) Synchronous UP/DOWN counter.

Soln:

When UP/DOWN= 1, UP mode,

UP/DOWN= 0, DOWN mode.

State Diagram:

Excitation Table:

Input

Up/Down

Present State Next State A B C

QA QB QC QA+1 QB+1 QC+1 JA KA JB KB JC KC

0 0 0 0 1 1 1 1 x 1 x 1 x

0 1 1 1 1 1 0 x 0 x 0 x 1

0 1 1 0 1 0 1 x 0 x 1 1 x

0 1 0 1 1 0 0 x 0 0 x x 1

0 1 0 0 0 1 1 x 1 1 x 1 x

0 0 1 1 0 1 0 0 x x 0 x 1

0 0 1 0 0 0 1 0 x x 1 1 x

0 0 0 1 0 0 0 0 x 0 x x 1

1 0 0 0 0 0 1 0 x 0 x 1 x

1 0 0 1 0 1 0 0 x 1 x x 1

1 0 1 0 0 1 1 0 x x 0 1 x

1 0 1 1 1 0 0 1 x x 1 x 1

1 1 0 0 1 0 1 x 0 0 x 1 x

1 1 0 1 1 1 0 x 0 1 x x 1

1 1 1 0 1 1 1 x 0 x 0 1 x

1 1 1 1 0 0 0 x 1 x 1 x 1

76

K-map Simplification:

Logic Diagram:

77

4.20 LOCKOUT CONDITION:

In a counter if the next state of some unused state is again a used state and if

by chance the counter happens to find itself in the unused states and never arrived at

a used state then the counter is said to be in the lockout condition.

Desired Sequence

The circuit that goes in lockout condition is called bushless circuit. To make

sure that the counter will come to the initial state from any unused state, the

additional logic circuit is necessary. To ensure that the lockout does not occur, the

counter should be designed by forcing the next state to be the initial state from the

unused states as shown below.

State diagram for removing lockout

8. Design a synchronous counter for

Soln:

State diagram:

Avoid lockout condition. Use JK type design.

78

Here, states 5, 2 and 0 are forced are forced to go into 6, 3 and 1state,

respectively to avoid lockout condition.

Excitation table:

Excitation Table for JK Flip-Flop:

Present State Next State Inputs

Qn Qn+1 J K

0 0 0 x
0 1 1 x
1 0 x 1
1 1 x 0

Excitation Table for counter:

Present State Next State Flip-Flop Inputs

QA QB QC QA+1 QB+1 QC+1 JA KA JB KB JC KC

0 0 0 0 0 1 0 x 0 x 1 x

0 0 1 1 0 0 1 x 0 x x 1

0 1 0 0 1 1 0 x x 0 1 x

0 1 1 0 0 1 0 x x 1 x 0

1 0 0 1 1 0 x 0 1 x 0 x

1 0 1 1 1 0 x 0 1 x x 1

1 1 0 1 1 1 x 0 x 0 1 x

1 1 1 0 1 1 x 1 x 0 x 0

K-map Simplification:

79

Logic Diagram:

UNIT III

COMPUTER FUNDAMENTALS

Functional Units of a Digital Computer: Von Neumann Architecture –

Operation and Operands of Computer Hardware Instruction – Instruction

Set Architecture (ISA): Memory Location, Address and Operation –

Instruction and Instruction Sequencing – Addressing Modes, Encoding of

Machine Instruction – Interaction between Assembly and High Level

Language.

3.1 Functional Units of Digital Computer

o A computer organization describes the functions and design of the various units of a digital

system.

o A general-purpose computer system is the best-known example of a digital system. Other

examples include telephone switching exchanges, digital voltmeters, digital counters,

electronic calculators and digital displays.

o Computer architecture deals with the specification of the instruction set and the hardware

units that implement the instructions.

o Computer hardware consists of electronic circuits, displays, magnetic and optic storage

media and also the communication facilities.

o Functional units are a part of a CPU that performs the operations and calculations called for

by the computer program.

o Functional units of a computer system are parts of the CPU (Central Processing Unit) that

performs the operations and calculations called for by the computer program. A computer

consists of five main components namely, Input unit, Central Processing Unit, Memory unit

Arithmetic & logical unit, Control unit and an Output unit.

Input unit

o Input units are used by the computer to read the data. The most commonly used input devices

are keyboards, mouse, joysticks, trackballs, microphones, etc.

o However, the most well-known input device is a keyboard. Whenever a key is pressed, the

corresponding letter or digit is automatically translated into its corresponding binary code

and transmitted over a cable to either the memory or the processor.

Central processing unit

o Central processing unit commonly known as CPU can be referred as an electronic circuitry

within a computer that carries out the instructions given by a computer program by

performing the basic arithmetic, logical, control and input/output (I/O) operations specified

by the instructions.

Memory unit

o The Memory unit can be referred to as the storage area in which programs are kept which are

running, and that contains data needed by the running programs.

o The Memory unit can be categorized in two ways namely, primary memory and secondary

memory.

o It enables a processor to access running execution applications and services that are

temporarily stored in a specific memory location.

o Primary storage is the fastest memory that operates at electronic speeds. Primary memory

contains a large number of semiconductor storage cells, capable of storing a bit of

information. The word length of a computer is between 16-64 bits.

o It is also known as the volatile form of memory, means when the computer is shut down,

anything contained in RAM is lost.

o Cache memory is also a kind of memory which is used to fetch the data very soon. They are

highly coupled with the processor.

o The most common examples of primary memory are RAM and ROM.

o Secondary memory is used when a large amount of data and programs have to be stored for a

long-term basis.

o It is also known as the Non-volatile memory form of memory, means the data is stored

permanently irrespective of shut down.

o The most common examples of secondary memory are magnetic disks, magnetic tapes, and

optical disks.

Arithmetic & logical unit

o Most of all the arithmetic and logical operations of a computer are executed in the ALU

(Arithmetic and Logical Unit) of the processor. It performs arithmetic operations like

addition, subtraction, multiplication, division and also the logical operations like AND, OR,

NOT operations.

Control unit

o The control unit is a component of a computer's central processing unit that coordinates the

operation of the processor. It tells the computer's memory, arithmetic/logic unit and input and

output devices how to respond to a program's instructions.

o The control unit is also known as the nerve center of a computer system.

o Let's us consider an example of addition of two operands by the instruction given as Add

LOCA, RO. This instruction adds the memory location LOCA to the operand in the register

RO and places the sum in the register RO. This instruction internally performs several steps.

Output Unit

o The primary function of the output unit is to send the processed results to the user. Output

devices display information in a way that the user can understand.

o Output devices are pieces of equipment that are used to generate information or any other

response processed by the computer. These devices display information that has been held or

generated within a computer.

o The most common example of an output device is a monitor.

3.2 Von-Neumann Model

Von-Neumann proposed his computer architecture design in 1945 which was later known as Von-

Neumann Architecture. It consisted of a Control Unit, Arithmetic, and Logical Memory Unit (ALU),

Registers and Inputs/Outputs.

Von Neumann architecture is based on the stored-program computer concept, where instruction data

and program data are stored in the same memory. This design is still used in most computers

produced today.

A Von Neumann-based computer:

o Uses a single processor

o Uses one memory for both instructions and data.

o Executes programs following the fetch-decode-execute cycle

Components of Von-Neumann Model:

o Central Processing Unit

o Buses

o Memory Unit

Central Processing Unit

The part of the Computer that performs the bulk of data processing operations is called the Central

Processing Unit and is referred to as the CPU.

The Central Processing Unit can also be defined as an electric circuit responsible for executing the

instructions of a computer program.Play Video

The CPU performs a variety of functions dictated by the type of instructions that are incorporated in

the computer.

The major components of CPU are Arithmetic and Logic Unit (ALU), Control Unit (CU) and a

variety of registers.

Arithmetic and Logic Unit (ALU)

The Arithmetic and Logic Unit (ALU) performs the required micro-operations for executing the

instructions. In simple words, ALU allows arithmetic (add, subtract, etc.) and logic (AND, OR,

NOT, etc.) operations to be carried out.

Control Unit

The Control Unit of a computer system controls the operations of components like ALU, memory

and input/output devices.

The Control Unit consists of a program counter that contains the address of the instructions to be

fetched and an instruction register into which instructions are fetched from memory for execution.

Registers

Registers refer to high-speed storage areas in the CPU. The data processed by the CPU are fetched

from the registers.

Following is the list of registers that plays a crucial role in data processing.

Registers Description

MAR (Memory Address Register) This register holds the memory location of the data that needs to be accessed.

MDR (Memory Data Register) This register holds the data that is being transferred to or from memory.

AC (Accumulator) This register holds the intermediate arithmetic and logic results.

PC (Program Counter) This register contains the address of the next instruction to be executed.

CIR (Current Instruction Register) This register contains the current instruction during processing.

Buses

Buses are the means by which information is shared between the registers in a multiple-register

configuration system.

A bus structure consists of a set of common lines, one for each bit of a register, through which binary

information is transferred one at a time. Control signals determine which register is selected by the

bus during each particular register transfer.

Von-Neumann Architecture comprised of three major bus systems for data transfer.

Bus Description

Address Bus Address Bus carries the address of data (but not the data) between the processor and the memory.

Data Bus Data Bus carries data between the processor, the memory unit and the input/output devices.

Control Bus Control Bus carries signals/commands from the CPU.

Memory Unit

A memory unit is a collection of storage cells together with associated circuits needed to transfer

information in and out of the storage. The memory stores binary information in groups of bits called

words. The internal structure of a memory unit is specified by the number of words it contains and

the number of bits in each word.

Two major types of memories are used in computer systems:

1. RAM (Random Access Memory)

2. ROM (Read-Only Memory)

3.3 Operation and Operands of Computer Hardware

Instruction

Computer instruction is a binary code that determines the micro-operations in a sequence for a computer.

They are saved in the memory along with the information. Each computer has its specific group of

instructions. They can be categorized into two elements as Operation codes (Opcodes) and Address. Opcodes

specify the operation for specific instructions, and an address determines the registers or the areas used for

that operation.

Operands are definite elements of computer instruction that show what information is to be operated

on. The most important general categories of data are

1. Addresses

2. Numbers

3. Characters

4. Logical data

In many cases, some calculation must be performed on the operand reference to determine the main

or virtual memory address.

In this context, addresses can be considered to be unsigned integers. Other common data types are numbers,

characters, and logical data, and each of these is briefly described below. Some machines define specialized

data types or data structures. For example, machine operations may operate directly on a list or a string of

characters.

Addresses

Addresses are nothing but a form of data. Here some calculations must be performed on the operand

reference in an instruction, which is to determine the physical address of an instruction.

Numbers

All machine languages include numeric data types. Even in non-numeric data processing, numbers

are needed to act as counters, field widths, etc. An important difference between numbers used in

ordinary mathematics and numbers stored in a computer is that the latter is limited. Thus, the

programmer is faced with understanding the consequences of rounding, overflow and underflow.

Here are the three types of numerical data in computers, such as:

1. Integer or fixed point: Fixed point representation is used to store integers, the positive and

negative whole numbers (… -3, -2, -1, 0, 1, 2, 3, …). However, the programmer assigns a radix point

location to each number and tracks the radix point through every operation. High-level programs,

such as C and BASIC usually allocate 16 bits to store each integer. Each fixed point binary number

has three important parameters that describe it:

 Whether the number is signed or unsigned,

 The position of the radix point to the right side of the sign bit (for signed numbers), or the position of

the radix point to the most significant bit (for unsigned numbers).

 And the number of fractional bits stored.

2. Floating point: A Floating Point number usually has a decimal point, which means 0, 3.14, 6.5,

and-125.5 are Floating Point

The term floating point is derived from the fact that there is no fixed number of digits before and

after the decimal point, which means the decimal point can float. There are also representations in

which the number of digits before and after the decimal point is set, called fixed-point

representations. In general, floating-point representations are slower and less accurate than fixed-

point representations, but they can handle a larger range of numbers.

3. Decimal number: The decimals are an extension of our number system. We also know that

decimals can be considered fractions with 10, 100, 1000, etc. The numbers expressed in the decimal

form are called decimal numbersor decimals. For example:1, 4.09, 13.83, etc. A decimal number has

two parts, and a dot separates these parts (.) called the decimal point.

 Whole number part: The digits lying to the left of the decimal point form the whole number part.

The places begin with ones, tens, hundreds, thousands and so on.

 Decimal part: The decimal point and the digits laying on the right of the decimal point form the

decimal part. The places begin with tenths, hundredths, thousandths and so on.

Characters

A common form of data is text or character strings. While textual data are most convenient for

humans. But computers work in binary. So, all characters, whether letters, punctuation or digits, are

stored as binary numbers. All of the characters that a computer can use are called character sets.

Here are the two common standards, such as:

1. American Standard Code for Information Interchange (ASCII)

2. Unicode

ASCII uses seven bits, giving a character set of 128 characters. The characters are represented in a

table called the ASCII table. The 128 characters include:

 32 control codes (mainly to do with printing)

 32 punctuation codes, symbols, and space

 26 upper-case letters

 26 lower-case letters

 numeric digits 0-9

We can say that the letter 'A' is the first letter of the alphabet; 'B' is the second, and so on, all the way

up to 'Z', which is the 26th letter. In ASCII, each character has its own assigned number. Denary,

binary and hexadecimal representations of ASCII characters are shown in the below table.

Character Denary Binary Hexadecimal

A 65 1000001 41

Z 90 1011010 5A

a 97 1100001 61

z 122 1111010 7A

0 48 0110000 30

9 57 0111001 39

Space 32 0100000 20

! 33 0100001 21

A is represented by the denary number 65 (binary 1000001, hexadecimal 41), B by 66 (binary

1000010, hexadecimal 42) and so on up to Z, which is represented by the denary number 90 (binary

1011010, hexadecimal 5A).

Similarly, lower-case letters start at denary 97 (binary 1100001, hexadecimal 61) and end at denary

122 (binary 1111010, hexadecimal 7A). When data is stored or transmitted, its ASCII or Unicode

number is used, not the character itself.

For example, the word "Computer" would be represented as:

1000011 1101111 1101101 1110000 1110101 1110100 1100101 1110010

On the other hand, IRA is also widely used outside the United States. A unique 7-bit pattern

represents each character in this code. Thus, 128 different characters can be represented, and more

than necessary to represent printable characters, and some of th patterns represent control

characters. Some control characters control the printing of characters on a page, and others are

concerned with communications procedures.

IRA-encoded characters are always stored and transmitted using 8 bits per character. The 8 bit may

be set to 0 or used as a parity bit for error detection. In the latter case, the bit is set such that the total

number of binary 1s in each octet is always odd (odd parity) or always even (even parity).

Logical data

Normally, each word or other addressable unit (byte, half-word, and so on) is treated as a single unit

of data. Sometimes, it is useful to consider an n-bit unit consisting of 1-bit items of data, each item

having the value 0 or 1. When data are viewed this way, they are considered to be logical data.

The Boolean data can only represent two values: true or false. Although only two values are

possible, they are rarely implemented as a single binary digit for efficiency reasons. Many

programming languages do not have an explicit Boolean type, instead of interpreting 0 as false and

other values as true. Boolean data refers to the logical structure of how the language is interpreted to

the machine language. In this case, a Boolean 0 refers to the logic False, and true is always a non

zero, especially one known as Boolean 1.

There are two advantages to the bit-oriented view:

 We may want to store an array of Boolean or binary data items, in which each item can take on only

the values 0 and 1. With logical data, memory can be used most efficiently for this storage.

 There are occasions when we want to manipulate the bits of a data item.

3.4 Instruction set Architecture(ISA):

An Instruction Set Architecture (ISA) is part of the abstract model of a computer that defines how the

CPU is controlled by the software. The ISA acts as an interface between the hardware and the software,

specifying both what the processor is capable of doing as well as how it gets done

Two types of instruction set architectures are

The two main categories of instruction set architectures, CISC (such as Intel's x86 series) and RISC (such

as ARM and MIPS),

The ISA of a processor can be described using 5 catagories:

Operand Storage in the CPU

Number of explicit named operands

Operand location

Operations

Type and size of operands

The 3 most common types of ISAs are:

1. Stack - The operands are implicitly on top of the stack.

2. Accumulator - One operand is implicitly the accumulator.

3. General Purpose Register (GPR) - All operands are explicitely mentioned, they are either

registers or memory locations

Stack Accumulator GPR

PUSH A LOAD A LOAD R1,A

PUSH B ADD B ADD R1,B

ADD STORE C STORE R1,C

POP C - -

The i8086 has many instructions that use implicit operands although it has a general register set. The

i8051 is another example, it has 4 banks of GPRs but most instructions must have the A register as

one of its operands.

Stack

Advantages: Simple Model of expression evaluation (reverse polish). Short instructions.

Disadvantages: A stack can't be randomly accessed This makes it hard to generate eficient code.

The stack itself is accessed every operation and becomes a bottleneck.

Accumulator

Advantages: Short instructions.

Disadvantages: The accumulator is only temporary storage so memory traffic is the highest for this

approach.

GPR

Advantages: Makes code generation easy. Data can be stored for long periods in registers.

Disadvantages: All operands must be named leading to longer instructions.

Reduced Instruction Set Computer (RISC):

RISC stands for Reduced Instruction Set Computer. The ISA is composed of instructions that all

have exactly the same size, usualy 32 bits. Thus they can be pre-fetched and pipelined succesfuly.

All ALU instructions have 3 operands which are only registers. The only memory access is through

explicit LOAD/STORE instructions.

Thus C = A + B will be assembled as:

LOAD R1,A

LOAD R2,B

ADD R3,R1,R2

STORE C,R3

Although it takes 4 instructions we can reuse the values in the registers.

Complex Instruction Set Architecture (CISC) :
The main idea is that a single instruction will do all loading, evaluating, and storing

operations just like a multiplication command will do stuff like loading data, evaluating,

and storing it, hence it’s complex

Memory Locations and Addresses

 The memory consists of many millions of storage cells, each of which can store a bit of information having the

value 0 or 1. Because a single bit represents a very small amount of information, bits are seldom handled

individually.

The usual approach is to deal with them in groups of fixed size. For this purpose, the memory is organized so that a

group of n bits can be stored or retrieved in a single, basic operation. Each group of n bits is referred to as a word

of information, and n is called the word length. The memory of a computer can be schematically represented as a

collection of words.

Modern computers have word lengths that typically range from 16 to 64 bits. If the word length of a computer

is 32 bits, a single word can store a 32-bit signed number or four ASCII-encoded characters, each occupying 8

bits, as shown in Figure

A unit of 8 bits is called a byte. Machine instructions may require one or more words for their representation.

After we have described instructions at the assembly-language level. Accessing the memory to store or

retrieve a single item of information, either a word or a byte, requires distinct names or addresses for each

location. It is customary to use numbers from 0 to 2k − 1, for some suitable value of k, as the addresses of

successive locations in the memory. Thus, the memory can have up to 2k addressable locations. The 2k

addresses constitute the address space of the computer. For example, a 24-bit address generates an address

space of 224 (16,777,216) locations. This number is usually written as 16M (16 mega), where 1M is the

number 220 (1,048,576). A 32-bit address creates an address space of 232 or 4G (4 giga) locations, where 1G

is 230. Other notational conventions that are commonly used are K (kilo) for the number 210 (1,024), and T

(tera) for the number 240

Byte Addressability :

A byte is always 8 bits, but the word length typically ranges from 16 to 64 bits. It is impractical to assign

distinct addresses to individual bit locations in the memory. The most practical assignment is to have

successive addresses refer to successive byte locations in the memory. This is the assignment used in most

modern computers. The term byte-addressable memory is used for this assignment. Byte locations have

addresses 0, 1, 2,.... Thus, if the word length of the machine is 32 bits, successive words are located at

addresses 0, 4, 8,..., with each word consisting of four bytes.

There are two ways that byte addresses can be assigned across words big-endian and Little endian

 The name big-endian is used when lower byte addresses are used for the more significant bytes (the leftmost

bytes) of the word.

The name little-endian is used for the opposite ordering, where the lower byte addresses are used for the less

significant bytes (the rightmost bytes) of the word. The words “more significant” and “less significant” are

used in relation to the weights (powers of 2) assigned to bits when the word represents a number. Both little-

endian and big-endian assignments are used in commercial machines. In both cases, byte addresses 0, 4, 8,...,

are taken as the addresses of successive words in the memory of a computer with a 32-bit word length. These

are the addresses used when accessing the memory to store or retrieve a word.

Memory Operations

 Both program instructions and data operands are stored in the memory. To execute an instruction, the

processor control circuits must cause the word (or words) containing the instruction to be transferred from the

memory to the processor. Operands and results must also be moved between the memory and the processor.

Thus, two basic operations involving the memory are needed, , namely Read and Write.

Read Operation:

The Read operation transfers a copy of the contents of a specific memory location to the processor. The

memory contents remain unchanged. To start a Read operation, the processor sends the address of the desired

location to the memory and requests that its contents be read. The memory reads the data stored at that

address and sends them to the processor.

Write Operation:

The Write operation transfers an item of information from the processor to a specific memory location,

overwriting the former contents of that location. To initiate a Write operation, the processor sends the address

of the desired location to the memory, together with the data to be written into that location. The memory then

uses the address and data to perform the write.

3.5 Instructions and Instruction Sequencing

The tasks carried out by a computer program consist of a sequence of small steps, such as adding two

numbers, testing for a particular condition, reading a character from the keyboard, or sending a character to be

displayed on a display screen.

A computer must have instructions capable of performing four types of operations:

• Data transfers between the memory and the processor registers

• Arithmetic and logic operations on data

• Program sequencing and control

• I/O transfers

We begin by discussing instructions for the first two types of operations. To facilitate the discussion, we first

need some notation

Register Transfer Notation

We need to describe the transfer of information from one location in a computer to another. Possible locations

that may be involved in such transfers are memory locations, processor registers, or registers in the I/O

subsystem.

Example 1:

R2 ← [LOC]

This expressionmeans that the contents of memory location LOC are transferred into processor register R2

Example 2:

As another example, consider the operation that adds the contents of registers R2 and R3, and places their sum

into register R4. This action is indicated as

R4 ← [R2]+[R3]

This type of notation is known as Register Transfer Notation (RTN). Note that the righthand side of an RTN

expression always denotes a value, and the left-hand side is the name of a location where the value is to be

placed, overwriting the old contents of that location

Assembly-Language Notation:

to represent machine instructions and programs we use assembly –Language notation

Example 1:

Load R2, LOC

a generic instruction that causes the transfer described above, from memory location LOC to processor

register R2, The contents of LOC are unchanged by the execution of this instruction, but the old contents of

register R2 are overwritten. The name Load is appropriate for this instruction, because the contents read from

a memory location are loaded into a processor register

Example 2:

Add R4, R2, R3

adding two numbers contained in processor registers R2 and R3 and placing their sum in R4 can be specified

by the assembly-language statement, registers R2 and R3 hold the source operands, while R4 is the

destination

RISC and CISC Instruction Sets

One of the most important characteristics that distinguish different computers is the nature of their

instructions. There are two fundamentally different approaches in the design of instruction sets for modern

computers. One popular approach is based on the premise that higher performance can be achieved if each

instruction occupies exactly one word in memory, and all operands needed to execute a given arithmetic or

logic operation specified by an instruction are already in processor registers. This approach is conducive to an

implementation of the processing unit in which the various operations needed to process a sequence of

instructions are performed in “pipelined” fashion to overlap activity and reduce total execution time of a

program. The restriction that each instruction must fit into a single word reduces the complexity and the

number of different types of instructions that may be included in the instruction set of a computer. Such

computers are called Reduced Instruction Set Computers (RISC).

An alternative to the RISC approach is to make use of more complex instructions which may span more than

one word of memory, and which may specify more complicated operations. This approach was prevalent prior

to the introduction of the RISC approach in the 1970s. Although the use of complex instructions was not

originally identified by any particular label, computers based on this idea have been subsequently called

Complex Instruction Set Computers (CISC).

Introduction to RISC Instruction Sets:

Two key characteristics of RISC instruction sets are: • Each instruction fits in a single word. • A load/store

architecture is used, in which – Memory operands are accessed only using Load and Store instructions. – All

operands involved in an arithmetic or logic operation must either be in processor registers, or one of the

operands may be given explicitly within the instruction word.

At the start of execution of a program, all instructions and data used in the program are stored in the memory

of a computer. Processor registers do not contain valid operands at that time . If operands are expected to be in

processor registers before they can be used by an instruction, then it is necessary to first bring these operands

into the registers. This task is done by Load instructions which copy the contents of a memory location into a

processor register. Load instructions are of the form

 Load destination, source

Or more specifically

Load processor_register, memory_location

Example:

The operation of adding two numbers is a fundamental capability in any computer.

The statement C = A + B

The required action can be accomplished by a sequence of simple machine instructions. We choose to use

registers R2, R3, and R4 to perform the task with four instructions:

Load R2, A

Load R3, B

Add R4, R2, R3

Store R4, C

Instruction Execution and Straight-Line Sequencing:

we used the task C = A + B

implemented as C ← [A] + [B]

We assume that the word length is 32 bits and the memory is byte-addressable. The four instructions of the

program are in successive word locations, starting at location i. Since each instruction is 4 bytes long, the

second, third, and fourth instructions are at addresses i + 4, i + 8, and i + 12. For simplicity, we assume that a

desired memory address can be directly specified in Load and Store instructions, although this is not possible

if a full 32-bit address is involved.

Let us consider how this program is executed. The processor contains a register called the program counter

(PC), which holds the address of the next instruction to be executed. To begin executing a program, the

address of its first instruction (i in our example) must be placed into the PC. Then, the processor control

circuits use the information in the PC to fetch and execute instructions, one at a time, in the order of

increasing addresses. This is called straight-line sequencing. During the execution of each instruction, the PC

is incremented by 4 to point to the next instruction. Thus, after the Store instruction at location i + 12 is

executed, the PC contains the value i + 16, which is the address of the first instruction of the next program

segment. Executing a given instruction is a two-phase procedure. In the first phase, called instruction fetch,

the instruction is fetched from the memory location whose address is in the PC. This instruction is placed in

the instruction register (IR) in the processor. At the start of the second phase, called instruction execute, the

instruction in IR is examined to determine which operation is to be performed. The specified operation is then

performed by the processor. This involves a small number of steps such as fetching operands from the

memory or from processor registers, performing an arithmetic or logic operation, and storing the result in the

destination location. At some point during this two-phase procedure, the contents of the PC are advanced to

point to the next instruction. When the execute phase of an instruction is completed, the PC contains the

address of the next instruction, and a new instruction fetch phase can begin.

Branching:

Consider the task of adding a list of n number

The addresses of the memory locations containing the n numbers are symbolically given as NUM1, NUM2,...,

NUMn, and separate Load and Add instructions are used to add each number to the contents of register R2.

After all the numbers have been added, the result is placed in memory location SUM.

Instead of using a long list of Load and Add instructions,

it is possible to implement a program loop in which the instructions read the next number in the list and add it

to the current sum. To add all numbers, the loop has to be executed as many times as there are numbers in the

list. The body of the loop is a straight-line sequence of instructions executed repeatedly. It starts at location

LOOP and ends at the instruction Branch_if_[R2]>0. During each pass through this loop, the address of the

next list entry is determined, and that entry is loaded into R5 and added to R3. The address of an operand can

be specified in various ways, as will be described in Section 2.4. For now, we concentrate on how to create

and control a program loop. Assume that the number of entries in the list, n, is stored in memory location N,

as shown. Register R2 is used as a counter to determine the number of times the loop is executed. Hence, the

contents of location N are loaded into register R2 at the beginning of the program. Then, within the body of

the loop, the instruction.

Subtract R2, R2, #1

reduces the contents of R2 by 1 each time through the loop. Execution of the loop is repeated as long as the

contents of R2 are greater than zero. We now introduce branch instructions. This type of instruction loads a

new address into the program counter. As a result, the processor fetches and executes the instruction at this

new address, called the branch target, instead of the instruction at the location that follows the branch

instruction in sequential address order. A conditional branch instruction causes a branch only if a specified

condition is satisfied. If the condition is not satisfied, the PC is incremented in the normal way, and the next

instruction in sequential address order is fetched and executed.

Branch_if_[R2]>0 LOOP

is a conditional branch instruction that causes a branch to location LOOP if the contents of register R2 are

greater than zero. This means that the loop is repeated as long as there are entries in the list that are yet to be

added to R3. At the end of the nth pass through the loop, the Subtract instruction produces a value of zero in

R2, and, hence, branching does not occur. Instead, the Store instruction is fetched and executed. It moves the

final result from R3 into memory location SUM.

Encoding of Machine Instructions:

we have introduced a variety of useful instructions and addressing modes. We have used a generic form of

assembly language to emphasize basic concepts without relying on processor-specific acronyms or

mnemonics. Assembly-language instructions symbolically express the actions that must be performed by the

processor circuitry.

To be executed in a processor, assembly-language instructions must be converted by the assembler program,

into machine instructions that are encoded in a compact binary pattern.

 Let us now examine how machine instructions may be formed.

The Add instruction

 Add Rdst, Rsrc1, Rsrc2

The above instruction representative of a class of three-operand instructions that use operands in processor

registers. Registers Rdst, Rsrc1, and Rsrc2 hold the destination and two source operands. If a processor has

32 registers, then it is necessary to use five bits to specify each of the three registers in such instructions. If

each instruction is implemented in a 32-bit word, the remaining 17 bits can be used to specify the OP code

that indicates the operation to be performed

Now consider instructions in which one operand is given using the Immediate addressing mode, such as Add

Rdst, Rsrc, #Value

Of the 32 bits available, ten bits are needed to specify the two registers. The remaining 22 bits must give the

OP code and the value of the immediate operand. The most useful sizes of immediate operands are 32, 16, and

8 bits. Since 32 bits are not available, a good choice is to allocate 16 bits for the immediate operand. This

leaves six bits for specifying the OP code.

This format can also be used for Load and Store instructions, where the Index addressing mode uses the 16-bit

field to specify the offset that is added to the contents of the index register.

The format in Figure b can also be used to encode the Branch instructions. The Branch-greater-than

instruction at memory address 128.

BGT R2, R0, LOOP

if the contents of register R0 are zero. The registers R2 and R0 can be specified in the two register fields in

Figure b. The six-bit OP code has to identify the BGT operation. The 16-bit immediate field can be used to

provide the information needed to determine the branch target address, which is the location of the instruction

with the label LOOP. The target address generally comprises 32 bits. Since there is no space for 32 bits, the

BGT instruction makes use of the immediate field to give an offset from the location of this instruction in the

program to the required branch target. At the time the BGT instruction is being executed, the program

counter, PC, has been incremented to point to the next instruction, which is the Store instruction at address

132. Therefore, the branch offset is 132 − 112 = 20. Since the processor computes the target address by

adding the current contents of the PC and the branch offset, the required offset in this example is negative,

namely −20. Finally, we should consider the Call instruction, which is used to call a subroutine. It only needs

to specify the OP code and an immediate value that is used to determine the address of the first instruction in

the subroutine. If six bits are used for the OP code, then the remaining 26 bits can be used to denote the

immediate value. This gives the format shown in c.

Addressing Modes:

The operation field of an instruction specifies the operation to be performed. And this

operation must be performed on some data. So each instruction need to specify data on

which the operation is to be performed. But the operand(data) may be in accumulator,

general purpose register or at some specified memory location. So, appropriate location

(address) of data is need to be specified, and in computer, there are various ways of

specifying the address of data. These various ways of specifying the address of data are

known as “Addressing Modes”

So Addressing Modes can be defined as “The technique for specifying the address of the

operands “ And in computer the address of operand i.e., the address where operand is actually

found is known as “Effective Address”. Now, in addition to this, the two most prominent

reason of why addressing modes are so important are:

First, the way the operand data are chosen during program execution is dependent on

the addressing mode of the instruction.

Second, the address field(or fields) in a typical instruction format are relatively small and

sometimes we would like to be able to reference a large range of locations, so here to achieve

this objective i.e., to fit this large range of location in address field, a variety of addressing

techniques has been employed. As they reduce the number of field in the addressing field of

the instruction.

Thus, Addressing Modes are very vital in Instruction Set

Architecture(ISA). some notations are

A= Contents of an address field in the instruction

R= Contents of an address field in the instruction that refers to a register

EA= Effective Address(Actual address) of location containing the referenced

operand. (X)= Contents of memory location x or register X.

Types Of Addressing Modes

Various types of addressing modes are:

1. Implied and Immediate Addressing Modes

2. Direct or Indirect Addressing Modes

3. Register Addressing Modes

4. Register Indirect Addressing Mode

5. Auto-Increment and Auto-Decrement Addressing Modes

6. Displacement Based Addressing Modes

1. Implied and Immediate Addressing Modes:

Implied Addressing Mode:

Implied Addressing Mode also known as "Implicit" or "Inherent“ addressing mode is the

addressing mode in which, no operand(register or memory location or data) is specified in the

instruction. As in this mode the operand are specified implicit in the definition of instruction.

“Complement Accumulator” is an Implied Mode instruction because the operand in the

accumulator register is implied in the definition of instruction. In assembly language it is written

as:

CMA: Take complement of content of AC Similarly, the instruction,

RLC: Rotate the content of Accumulator is an implied mode instruction.

All Register-Reference instruction that use an accumulator and Zero-Address instruction in a

Stack Organised Computer are implied mode instructions, because in Register reference operand

implied in accumulator and in Zero-Address instruction, the operand implied on the Top of

Stack.

Immediate Addressing Mode:

In Immediate Addressing Mode operand is specified in the instruction itself. In other words, an

immediate mode instruction has an operand field rather than an address field, which contain

actual operand to be used in conjunction with the operand specified in the instruction. That is, in

this mode, the format of instruction is:

As an example: The Instruction:

MVI 06 Move 06 to the accumulator

ADD 05 ADD 05 to the content of accumulator

 One of the operand is mentioned directly.

 Data is available as a part of instruction.

 Data is 8 0r 16 bit long.

 No memory reference is needed to fetch data

Immediate Mode :Eg.

Example 1 :

MOV CL, 03H

03 – 8 bit immediate source operand

CL – 8 bit register destination operand

Example 2:

ADD AX, 0525H

0525 – 16 bit immediate source operand

AX – 16 bit register destination operand.

2. Direct and Indirect Addressing Modes

The instruction format for direct and indirect addressing mode is shown below:

It consists of 3-bit opcode, 12-bit address and a mode bit designated as(I).The mode bit (I) is

zero for Direct Address and 1 for Indirect Address. Now we will discuss about each in detail

one by one.

Direct Addressing Mode

Direct Addressing Mode is also known as “Absolute Addressing Mode”. In this mode the

address of data(operand) is specified in the instruction itself. That is, in this type of mode, the

operand resides in memory and its address is given directly by the address field of the

instruction. Means, in other words, in this mode, the address field contain the Effective Address

of operand i.e., EA=A

As an example: Consider the instruction:

ADD A Means add contents of cell A to accumulator .

It Would look like as shown below:

Indirect Addressing Mode:

In this mode, the address field of instruction gives the memory address where on, the operand is

stored in memory. That is, in this mode, the address field of the instruction gives the address

where the “Effective Address” is stored in memory. i.e., EA=(A)

Means, here, Control fetches the instruction from memory and then uses its address part to

access memory again to read Effective Address.

As an example: Consider the instruction:

ADD (A) Means adds the content of cell pointed to contents of A to Accumulator. It look

like as shown in figure below:

Thus in it, AC <-- M[M[A]]

[M=Memory]

i.e., (A)=1350=EA

3. Register

Addressing

Mode:

In Register Addressing Mode, the operands are in registers that reside within the CPU. That is, in

this mode, instruction specifies a register in CPU, which contain the operand. It is like Direct

Addressing Mode, the only difference is that the address field refers to a register instead of

memory location.

i.e., EA=R

It look like as:

Example of such instructions are:

MOV AX, BX Move contents of Register BX to AX

ADD AX, BX Add the contents of register BX to AX

Here, AX, BX are used as register names which is of 16-bit register.

Thus, for a Register Addressing Mode, there is no need to compute the actual address as the

operand is in a register and to get operand there is no memory access involved

4. Register Indirect Addressing Mode:

In Register Indirect Addressing Mode, the instruction specifies a register in CPU whose contents

give the operand in memory. In other words, the selected register contain the address of operand

rather than the operand itself. That is,

i.e., EA=(R)

Means, control fetches instruction from memory and then uses its address to access Register and

looks in Register(R) for effective address of operand in memory.

It look like as:

Here, the parentheses are to be interpreted as

meaning contents of.

Example of such instructions are:

MOV AL, [BX]

Code example in Register:

MOV BX, 1000H

MOV 1000H, operand

From above example, it is clear that, the instruction(MOV AL, [BX]) specifies a register[BX],

and in coding of register, we see that, when we move register [BX], the register contain the

address of operand(1000H) rather than address itself.

5. Auto-increment and Auto-decrement

Addressing Modes

These are similar to Register indirect Addressing Mode except that the register is incremented or

decremented after(or before) its value is used to access memory. These modes are required

because when the address stored in register refers to a table of data in memory, then it is

necessary to increment or decrement the register after every access to table so that next value is

accessed from memory.

Thus, these addressing modes are common requirements in computer.

Auto-increment Addressing Mode:

Auto-increment Addressing Mode are similar to Register Indirect Addressing Mode except that

the register is incremented after its value is loaded (or accessed) at another location like

accumulator(AC).

That is, in this case also, the Effective Address is equal to

EA=(R)

But, after accessing operand, register is incremented by 1.

As an example:

It look like as shown below:

Here, we see that effective address is (R)=400 and operand in AC is 7. And after loading R1 is

incremented by 1.It becomes 401.

Means, here we see that, in the Auto-increment mode, the R1 register is increment to 401 after

execution of instruction.

Auto-decrement Addressing Mode:

Auto-decrement Addressing Mode is reverse of auto-increment , as in it the register is

decrement before the execution of the instruction. That is, in this case, effective address is equal

to

EA=(R) - 1

As an example:

It look like as shown below:

Here, we see that, in the Auto-decrement mode, the register R1 is decremented to 399 prior to

execution of the instruction, means the operand is loaded to accumulator, is of address 1099H in

memory, instead of 1088H.Thus, in this case effective address is 1099H and contents loaded into

accumulator is 700.

6. Displacement Based Addressing Modes:

Displacement Based Addressing Modes is a powerful addressing mode as it is a combination of

direct addressing or register indirect addressing mode. i.e., EA=A+(R)

Means, Displacement Addressing Modes requires that the instruction have two address fields, at

least one of which is explicit means, one is address field indicate direct address and other

indicate indirect address.

That is, value contained in one addressing field is A, which is used directly and the value in other

address field is R, which refers to a register whose contents are to be added to produce effective

address.

There are three areas where Displacement Addressing modes are used. In other words,

Displacement Based Addressing Modes are of three types. These are:

1. Relative Addressing Mode

2. Base Register Addressing Mode

3. Indexing Addressing Mode

Now we will explore to each one by one.

1. Relative Addressing Mode:

In Relative Addressing Mode , the contents of program counter is added to the address part of

instruction to obtain the Effective Address.

That is, in Relative Addressing Mode, the address field of the instruction is added to implicitly

reference register Program Counter to obtain effective address.

i.e., EA=A+PC

It becomes clear with an example:

Assume that PC contains the no.- 825 and the address part of instruction contain the no.- 24, then

the instruction at location 825 is read from memory during fetch phase and the Program Counter

is then incremented by one to 826.

The effective address computation for relative address mode is 26+24=850

Thus, Effective Address is displacement relative to the address of instruction. Relative

Addressing is often used with branch type instruction

2. Index Register Addressing Mode

In indexed addressing mode, the content of Index Register is added to direct address part(or

field) of instruction to obtain the effective address. Means, in it, the register indirect addressing

field of instruction point to Index Register, which is a special CPU register that contain an

Indexed value, and direct addressing field contain base address.

As, indexed type instruction make sense that data array is in memory and each operand in the

array is stored in memory relative to base address. And the distance between the beginning

address and the address of operand is the indexed value stored in indexed register.

Any operand in the array can be accessed with the same instruction, which provided that the

index register contains the correct index value i.e., the index register can be incremented to

facilitate access to consecutive operands.

Thus, in index addressing mode

EA=A+Index

3. Base Register Addressing Mode:

In this mode, the content of the Base Register is added to the direct address part of the

instruction to obtain the effective address.

Means, in it the register indirect address field point to the Base Register and to obtain EA, the

contents of Instruction Register, is added to direct address part of the instruction.

This is similar to indexed addressing mode except that the register is now called as Base Register

instead of Index Register.

That is, the EA=A+Base

Thus, the difference between Base and Index mode is in the way they are used rather than

the way they are computed. An Index Register is assumed to hold an index number that is

relative to the address part of the instruction. And a Base Register is assumed to hold a

base address and the direct address field of instruction gives a displacement relative to this

base address.

Thus, the Base register addressing mode is used in computer to facilitate the relocation of

programs in memory. Means, when programs and data are moved from one segment of

memory to another, then Base address is changed, the displacement value of instruction

do not change.

So, only the value of Base Register requires updation to reflect the beginning of new

memory segment.

UNIT IV PROCESSOR

Instruction Execution

The execution of an instruction in a processor can be split up into a number of stages. How

many stages there are, and the purpose of each stage is different for each processor design.

Examples includes 2 stages (Instruction Fetch / Instruction Execute) and 3 stages (Instruction

Fetch, Instruction Decode, Instruction Execute).

The MIPS processor has 5 stages:

IF

The Instruction Fetch stage fetches the next instruction from memory using the address

in the PC (Program Counter) register and stores this instruction in the IR (Instruction

Register)

ID
The Instruction Decode stage decodes the instruction in the IR, calculates the next PC,

and reads any operands required from the register file.

EX

The Execute stage "executes" the instruction. In fact, all ALU operations are done in

this stage. (The ALU is the Arithmetic and Logic Unit and performs operations such as

addition, subtraction, shifts left and right, etc.)

MA

The Memory Access stage performs any memory access required by the current

instruction, So, for loads, it would load an operand from memory. For stores, it would

store an operand into memory. For all other instructions, it would do nothing.

WB

For instructions that have a result (a destination register), the Write Back writes this

result back to the register file. Note that this includes nearly all instructions, except

nops (a nop, no-op or no-operation instruction simply does nothing) and s (stores).

BASIC MIPS IMPLEMENTATION

MIPS implementation includes a subset of the core MIPS instruction set:

■ The memory-reference instructions load word (lw) and store word (sw)

■ The arithmetic-logical instructions add, sub, AND, OR, and slt

■ The instructions branch equal (beq) and jump (j), which we add last

This subset does not include all the integer instructions (for example, shift,multiply, and

divide are missing), nor does it include any floating-point instructions.

An Overview of the Implementation

The core MIPS instructions includes

• The integer arithmetic-logical instructions,

• The memory-reference instructions, and

• The branch instructions.

For every instruction, the first two steps are identical:

1. Send the program counter (PC) to the memory that contains the code andfetch the

instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the registersto read. For

the load word instruction, we need to read only one register, butmost other instructions

require reading two registers.

❖ For example, all instruction classes, except jump, use the arithmetic-logical

unit(ALU) after reading the registers.

❖ The memory-reference instructions use the ALU for an address calculation, the

arithmetic-logical instructions for the operationexecution, and branches for

comparison.

❖ A memory-reference instruction will need to access the memory either to read data for

a load or write data for a store.

❖ An arithmetic-logical or load instruction must write the data from the ALU or

memory back into a register.

❖ Lastly, for a branch instruction, we may need to change the next instruction address

based on the comparison; otherwise, the PC should be incremented by 4 to get the

address of the next instruction.

Figure 3.1 shows the high-level view of a MIPS implementation, focusing onthe various

functional units and their interconnection.

❖ A logic element need to be added that chooses from among the multiple sources and

steers one of those sources to its destination.

❖ This selection is commonly done with a device called a multiplexor, although this

devicemight better be called a data selector.

❖ The multiplexor selects from among several inputs based on the setting of its control

lines. The control lines are set based primarily on information taken from the

instruction being executed.

Fig 3.1: An abstract view of the implementation of the MIPS subset showing the

major functional units and the major connections between them.

Figure 3.2 shows the datapath of Figure 3.1 with the three required multiplexors added, as

well as control lines for the major functional units. A control unit, which has the instruction

as an input, is used to determine how to set the control lines for the functional units and two

of the multiplexors.

Fig 3.2: The basic implementation of the MIPS subset, including the necessary

multiplexors and control lines.

❖ The top multiplexor controls the value of PC(PC+4 or the branch destination address.

❖ The middle multiplexor is used to steer the output of the ALU for writing in to the

register file.

❖ The bottom most multiplexor is used to determine whether the second ALU input is

from the registers

BUILDING DATAPATH

• Single-cycle Datapath:

Each instruction executes in a single cycle

• Multi-cycle Datapath:

Each instruction is broken up into a series of shorter steps

• Pipelined Datapath:

Each instruction is broken up into a series of steps; Multiple instructions

execute at once

Differences between single cycle and multi cycle datapath

❖ Single cycle Data Path:

o Each instruction is processed in one (long) clock cycle

o Two separate memory units for instructions and data.

❖ Multi-cycle Data Path:

o Divide the processing of each instruction into 5 stages and allocate one clock cycle

per stage

o Single memory unit for both instructions and data

o Single ALU for all arithmetic operations

o Extra registers needed to hold values between each steps

• Instruction Register (IR) holds the instruction

• Memory Data Register (MDR) holds the data coming from memory

• A, B hold operand data coming from the registers

• ALUOut holds output coming out of the ALU

Creating a single cycle datapath

❖ This simplest datapath will attempt to execute all instructions in one clock cycle. This

means that no datapath resource can be used more than once per instruction, so any

element needed more than once must be duplicated. We therefore need a memory for

instructions separate from one for data. Although some of the functional units will

need to be duplicated, many of the elements can be shared by different instruction

flows.

❖ To share a datapath element between two different instruction classes, we may need to

allow multiple connections to the input of an element, using a multiplexor and control

signal to select among the multiple inputs.

❖ A reasonable way to start a datapath design is to examine the major components

required to execute each class of MIPS instructions. Let’s start at the top by looking at

which datapath elements each instruction needs, and then work our way down

through the levels of abstraction. When we show the datapath elements, we will also

show their control signals. We use abstraction in this explanation, starting from the

bottom up.

Datapath Element

A unit used to operate on or hold data within a processor. In the MIPS implementation, the

datapath elements include the instruction and data memories, the register file, the ALU, and

adders.

Program Counter (PC)

❖ Figure 3.3a shows the first element we need: a memory unit to store the instructions

of a program and supply instructions given an address. Figure 3.3 b also shows the

program counter (PC), the register containing the address of the instruction in the

program being executed.

❖ Lastly, we will need an adder to increment the PC to the address of the next

instruction. This adder, which is combinational, can be built from the ALU simply by

wiring the control lines so that the control always specifies an add operation.

❖ We will draw such an ALU with the label Add, as in Figure 3.3c, to indicate that it has

been permanently made an adder and cannot perform the other ALU functions.

❖ To execute any instruction, we must start by fetching the instruction from memory.

To prepare for executing the next instruction, we must also increment the program

counter so that it points at the next instruction, 4 bytes later.

Fig 3.3: Two state elements are needed to store and access instructions, and an adder is needed

to compute the next instruction address.

Figure 3.4 shows how to combine the three elements to form a datapath that fetches

instructions and increments the PC to obtain the address of the next sequential instruction.

Fig 3.4: A portion of the datapath used for fetching instructions and incrementing the

program counter. The fetched instruction is used by other parts of the datapath

R-FORMAT INSTRUCTIONS

❖ To perform any operation we required two registers, perform an ALU operation on

the contents of the registers, and write the result to a register. We call these

instructions either R-type instructions or arithmetic-logical instructions (since they

perform arithmetic or logical operations). This instruction class includes add, sub,

AND, OR, and slt,

❖ The processor’s 32 general-purpose registers are stored in a structure called a register

file. A register file is a collection of registers in which any register can be read or

written by specifying the number of the register in the file.

❖ R-format instructions have three register operands, so we will need to read two data

words from the register file and write one data word into the register file for each

instruction.

❖ For each data word to be read from the registers, we need an input to the register file

that specifies the register number to be read and an output from the register file that

will carry the value that has been read from the registers.

❖ To write a data word, we will need two inputs: one to specify the register number to

be written and one to supply the data to be written into the register. The register file

always outputs the contents of whatever register numbers are on the Read register

inputs. Writes, however, are controlled by the write control signal, which must be

asserted for a write to occur at the clock edge.

❖ Figure 3.5a shows the result; we need a total of four inputs (three for register numbers

and one for data) and two outputs (both for data). The register number inputs are 5

bits wide to specify one of 32 registers (32 = 25), whereas the data input and two data

output buses are each 32 bits wide.

❖ Figure 3.5b shows the ALU, which takes two 32-bit inputs and produces a 32-bit

result, as well as a 1-bit signal if the result is 0.

Fig 3.5: The two elements needed to implement R-format ALU operations are the

register file and the ALU.

DATAPATH SEGMENT FOR Load Word and Store Word INSTRUCTION

❖ Now, consider the MIPS load word and store word instructions, which have the

general form lw $t1,offset_value($t2) or sw $t1,offset_value ($t2).

❖ In these instructions $t1 is a data register and $t2 is a base register. The memory

address is computed by adding the base register($t2), to the 16-bit signed off set,

values specified in the instruction.

❖ If the instruction is a store, the value to be stored must also be read from the register

file where it resides in $t1. If the instruction is a load, the value read from memory

must be written into the register file in the specified register, which is $t1. Thus, we

will need both the register file and the ALU from Figure 3.5.

❖ In addition, we will need a unit to sign-extend the 16-bit off set field in the instruction

to a 32-bit signed value, and a data memory unit to read from or write to. The data

memory must be written on store instructions; Figure 3.6 shows these two elements.

Fig 3.6: The two units needed to implement loads and stores, in addition to the register

file and ALU of Figure 3.5

DATAPATH SEGMENT FOR Branch INSTRUCTION

For computing the branch target address, we must also determine whether the next

instruction is the instruction that follows sequentially or the instruction at the branch target

address.

When the condition is true (i.e., the operands are equal), the branch target address becomes

the new PC, and we say that the branch is taken. If the operands are not equal, the

incremented PC should replace the current PC (just as for any other normal instruction); in

this case, we say that the branch is not taken.

Figure 3.7 shows the structure of the datapath segment that handles branches. To compute the

branch target address, the branch datapath includes a sign extension unit, and an adder.

FIG 3.7: Computation of branch target address

Since that ALU provides an output signal that indicates whether the result was 0, we can send

the two register operands to the ALU with the control set to do a subtract. If the Zero signal

out of the ALU unit is asserted, we know that the two values are equal. Although the Zero

output always signals if the result is 0, we will be using it only to implement the equal test of

branches. Later, we will show exactly how to connect the control signals of the ALU for use

in the datapath.

The jump instruction operates by replacing the lower 28 bits of the PC with the lower 26 bits

of the instruction shifted left by 2 bits.

CONTROL IMPLEMENTATION SCHEME

This simple implementation covers load word (lw), store word (sw), branch equal (beq), and

the arithmetic-logical instructions add, sub, AND, OR, and set on less than.

The ALU Control

The MIPS ALU defines the 6 following combinations of four control inputs:

Table 3.1: ALU control signals

Depending on the instruction class, the ALU will need to perform one of these first five

functions. For branch equal, the ALU must perform a subtraction. We can generate the 4-bit

ALU control input using a small control unit that has as inputs the function field of the

instruction and a 2-bit control field, which we call ALUOp.

 ALUOp indicates whether the operation to be performed should be add (00) for loads and

stores, subtract (01) for beq, or determined by the operation encoded in the funct field (10).

The output of the ALU control unit is a 4-bit signal that directly controls the ALU by

generating one of the 4-bit combinations shown previously. In Figure 3.2, we show how to

set the ALU control inputs based on the 2-bit ALUOp control and the 6-bit function code.

Later in this chapter we will see how the ALUOp bits are generated from the main control

unit.

Table 3.2: The ALUOp control bits and the different function codes for the R-

type instruction.

Using multiple levels of control can reduce the size of the main control unit. Using several

smaller control units may also potentially increase the speed of the control unit. There are

several different ways to implement the mapping from the 2-bit ALUOp field and the 6-bit

funct field to the four ALU operation control bits.

Table 3.3; shows the truth table how the 4-bit ALU control is set depending on these two

input fields. Since the full truth table is very large (28 = 256 entries), we show only the truth

table entries for which the ALU control must have a specific value

Table 3.3: The truth table for the 4 ALU control bits (called Operation)

Designing the Main Control Unit

To understand how to connect the fields of an instruction to the datapath, it is useful to

review the formats of the three instruction classes: the R-type, branch, and load-store

instructions. Figure 3.8 shows these formats.

FIGURE 3.8 The three instruction classes (R-type, load and store, and branch) use two

different instruction formats.

There are several major observations about this instruction format that we will rely on:

■ The op field, is called the opcode, is always contained in bits 31:26. Refer to this field as

Op[5:0].

■ The two registers to be read are always specified by the rs and rt fields, at positions 25:21

and 20:16. This is true for the R-type instructions, branch equal, and store.

■ The base register for load and store instructions is always in bit positions 25:21 (rs).

■ The 16-bit off set for branch equal, load, and store is always in positions 15:0.

■ The destination register is in one of two places. For a load it is in bit positions 20:16 (rt),

while for an R-type instruction it is in bit positions 15:11 (rd).

Th us, we will need to add a multiplexor to select which fi eld of the instruction is used to

indicate the register number to be written. The first design principle simplicity favors

regularity—pays off here in specifying control.

FIGURE 3.9 The datapath with all necessary multiplexors and all control lines

identified.

❖ Figure 3.9 shows seven single-bit control lines plus the 2-bit ALUOp control signal.

We have already defined how the ALUOp control signal works, and it is useful to

define what the seven other control signals do informally before we determine how to

set these control signals during instruction execution.

❖ Table 3.4 describes the function of these seven control lines. That control line should

be asserted (activated or set true) if the instruction is branch on equal (a decision that

the control unit can make) and the Zero output of the ALU, which is used for equality

comparison, is asserted. To generate the PCSrc signal, we will need to AND together

a signal from the control unit, which we call Branch, with the Zero signal out of the

ALU.

Table 3.4: The effect of each of the seven control signals.

❖ These nine control signals (seven from Figure 4.16 and two for ALUOp) can now be

set on the basis of six input signals to the control unit, which are the opcode bits 31 to

26. Figure 3.10 shows the datapath with the control unit and the control signals.

Finalizing Control

Table 3.6 shows the logic in the control unit as one large truth table that combines all the

outputs and that uses the opcode bits as inputs. It completely specifies the control function,

Table 3.6: The control function for the simple single-cycle implementation is completely

specified by this truth table.

OPERATION OF THE DATAPATH

The flow of three different instruction classes through the datapath is shown in table 3.5. The

asserted control signals and active datapath elements are highlighted in each of these. Note

that a multiplexor whose control is 0 has a definite action, even if its control line is not

highlighted. Multiple-bit control signals are highlighted if any constituent signal is asserted.

Table 3.5: The setting of the control lines is completely determined by the opcode fields

of the instruction.

Fig 3.10: shows the datapath with the control unit and the control signals. The setting of the

control lines depends only on the opcode, we defi ne whether each control signal should be 0,

1, or don’t care (X) for each of the opcode values.

FIGURE 3.10: The simple datapath with the control unit.

DATAPATH FOR THE OPERATION OF A R-TYPE INSTRUCTION

Figure 3.11 shows the operation of the datapath for an R-type instruction, such as add

$t1,$t2,$t3. Although everything occurs in one clock cycle, we can think of four steps to

execute the instruction; these steps are ordered by the flow of information:

1. The instruction is fetched, and the PC is incremented.

2. Two registers, $t2 and $t3, are read from the register file; also, the main control unit

computes the setting of the control lines during this step.

3. The ALU operates on the data read from the register file, using the function code (bits 5:0,

which is the funct field, of the instruction) to generate the ALU function.

4. The result from the ALU is written into the register file using bits 15:11 of the instruction

to select the destination register ($t1).

FIGURE 3.11: The datapath in operation for an R-type instruction

DATAPATH FOR THE OPERATION OF load word INSTRUCTION

The given figure 3.12 shows the active functional units and asserted control lines for a load.

We can think of a load instruction as operating in five steps (similar to how the R-type

executed in four):

1. An instruction is fetched from the instruction memory, and the PC is incremented.

2. A register ($t2) value is read from the register file.

3. The ALU computes the sum of the value read from the register file and the sign-extended,

lower 16 bits of the instruction (offset).

4. The sum from the ALU is used as the address for the data memory.

5. The data from the memory unit is written into the register file; the register destination is

given by bits 20:16 of the instruction ($t1).

Finally, we can show the operation of the branch-on-equal instruction, such as beq $t1, $t2,

offset, in the same fashion. It operates much like an R-format instruction, but the ALU output

is used to determine whether the PC is written with PC + 4 or the branch target address.

FIGURE 3.12: The datapath in operation for a load instruction.

DATAPATH FOR THE OPERATION OF BRANCH-ON-EQUAL INSTRUCTION

The given figure 3.13 shows the four steps in execution:

1. An instruction is fetched from the instruction memory, and the PC is incremented.

2. Two registers, $t1 and $t2, are read from the register file.

3. The ALU performs a subtract on the data values read from the register file. The value of

PC + 4 is added to the sign-extended, lower 16 bits of the instruction (offset) shifted left by

two; the result is the branch target address.

4. The Zero result from the ALU is used to decide which adder result to store into the PC.

FIGURE 3.13: The datapath in operation for a branch-on-equal instruction.

PIPELINING

Pipelining is an implementation technique in which multiple instructions are overlapped in

execution. The computer pipeline is divided in stages. Each stage completes a part of an

instruction in parallel. The stages are connected one to the next to form a pipe - instructions

enter at one end, progress through the stages, and exit at the other end.

Today,. The non-pipelined approach to laundry would be as follows:

1. Place one dirty load of clothes in the washer.

2. When the washer is finished, place the wet load in the dryer.

3. When the dryer is finished, place the dry load on a table and fold.

4. When folding is finished, ask your roommate to put the clothes away.

When your roommate is done, start over with the next dirty load.

 FIGURE 3.14: The laundry analogy for pipelining.

◼ A technique used in advanced microprocessors where the microprocessor begins

executing a second instruction before the first has been completed.

- A Pipeline is a series of stages, where some work is done at each stage. The work is

not finished until it has passed through all stages.

◼ With pipelining, the computer architecture allows the next instructions to be fetched

while the processor is performing arithmetic operations, holding them in a buffer

close to the processor until each instruction operation can performed.

How Pipelines Works

❖ The pipeline is divided into segments and each segment can execute it operation

concurrently with the other segments. Once a segment completes an operations, it passes

the result to the next segment in the pipeline and fetches the next operations from the

preceding segment.

❖ The pipelined approach takes much less time, as Figure 3.14 shows. As soon as the

washer is finished with the first load and placed in the dryer, you load the washer with the

second dirty load. When the first load is dry, you place it on the table to start folding,

move the wet load to the dryer, and put the next dirty load into the washer. Next you have

your roommate put the first load away, you start folding the second load, the dryer has the

third load, and you put the fourth load into the washer. At this point all steps—called

stages in pipelining—are operating concurrently.

❖ If all the stages take about the same amount of time and there is enough work to do, then

the speed-up due to pipelining is equal to the number of stages in the pipeline, in this case

four: washing, drying, folding, and putting away. Therefore, pipelined laundry is

potentially four times faster than non-pipelined: 20 loads would take about 5 times as

long as 1 load, while 20 loads of sequential laundry takes 20 times as long as 1 load. It’s

only 2.3 times faster in 3.14, because we only show 4 loads.

The same principles apply to processors where we pipeline instruction-execution. MIPS

instructions classically take five steps:

1. Fetch instruction from memory.

2. Read registers while decoding the instruction. The regular format of MIPS

instructions allows reading and decoding to occur simultaneously.

3. Execute the operation or calculate an address.

4. Access an operand in data memory.

5. Write the result into a register.

DESIGNING INSTRUCTION SETS FOR PIPELINING

❖ First, all MIPS instructions are the same length. This restriction makes it much easier

to fetch instructions in the first pipeline stage and to decode them in the second stage.

❖ Second, MIPS have only a few instruction formats, with the source register fields

being located in the same place in each instruction. This symmetry means that the

second stage can begin reading the register file at the same time that the hardware is

determining what type of instruction was fetched.

❖ Third, memory operands only appear in loads or stores in MIPS. This restriction

means we can use the execute stage to calculate the memory address and then access

memory in the following stage.

❖ Fourth, operands must be aligned in memory. Hence, we need not worry about a

single data transfer instruction requiring two data memory accesses; the requested

data can be transferred between processor and memory in a single pipeline stage.

PIPELINE HAZARDS

There are situations in pipelining when the next instruction cannot execute in the following

clock cycle. These events are called hazards, and there are three different types.

Hazards

• Structural Hazards

• Data Hazards

• Control Hazards

STRUCTURAL HAZARD

❖ Structural Hazard occurs when a planned instruction cannot execute in the proper

clock cycle because the hardware does not support the combination of instructions

that are set to execute.

❖ A structural hazard in the laundry room would occur if we used a washer dryer

combination instead of a separate washer and dryer, or if our roommate was busy

doing something else and wouldn’t put clothes away. Our carefully scheduled pipeline

plans would then be foiled.

FIGURE 3.15 Single-cycle, non-pipelined execution in top versus pipelined execution in

bottom.

As we said above, the MIPS instruction set was designed to be pipelined, making it fairly

easy for designers to avoid structural hazards when designing a pipeline. Suppose, however,

that we had a single memory instead of two memories. If the pipeline in Figure 3.15 had a

fourth instruction, we would see that in the same clock cycle the first instruction is accessing

data from memory while the fourth instruction is fetching an instruction from that same

memory. Without two memories, our pipeline could have a structural hazard.

DATA HAZARDS

❖ It is also called a pipeline data hazard. When a planned instruction cannot execute in

the proper clock cycle because data that is needed to execute the instruction is not yet

available.

❖ Data hazards occur when the pipeline must be stalled because one step must wait for

another to complete.

❖ In a computer pipeline, data hazards arise from the dependence of one instruction on

an earlier one that is still in the pipeline. For example, suppose we have an add

instruction followed immediately by a subtract instruction that uses the sum ($s0):

add $s0, $t0, $t1

sub $t2, $s0, $t3

❖ Without intervention, a data hazard could severely stall the pipeline. The add

instruction doesn’t write its result until the fifth stage, meaning that we would have to

waste three clock cycles in the pipeline.

❖ To resolve the data hazard, for the code sequence above, as soon as the ALU creates

the sum for the add operation, we can supply it as an input for the subtract. This is

done by adding extra hardware to retrieve the missing item early from the internal

resources is called forwarding or bypassing.

❖ Figure below shows the connection to forward the value in $s0 after the execution

stage of the add instruction as input to the execution stage of the sub instruction.

Fig 3.16: Graphical representation of forwarding

❖ Forwarding paths are valid only if the destination stage is later in time than the source

stage. For example, there cannot be a valid forwarding path from the output of the

memory access stage in the first instruction to the input of the execution stage of the

following, since that would mean going backward in time.

❖ Forwarding cannot prevent all pipeline stalls, suppose the first instruction was a load of

$s0 instead of an add, So desired data would be available only after the fourth stage of

the first instruction in the dependence, which is too late for the input of the third stage of

sub instruction.

lw $s0, 20($t1)

sub $t2, $s0, $t3

❖ Even with forwarding, we would have to stall one stage for a load-use data hazard, this

figure shows below an important pipeline concept, officially called a pipeline stall, but

often given the nickname bubble.

Fig 3.17: A stall even with forwarding when an R-format instruction following a load

tries to use the data.

CONTROL HAZARDS

❖ It is also called as branch hazard. When the proper instruction cannot execute in the

proper pipeline clock cycle because the instruction that was fetched is not the one that

is needed; that is, the flow of instruction addresses is not what the pipeline expected.

❖ A control hazard, arising from the need to make a decision based on the results of one

instruction while others are executing.

❖ Even with this extra hardware, the pipeline involving conditional branches would look

like figure 3.18. The lw instruction, executed if the branch fails, is stalled one extra

200 ps clock cycle before starting.

❖ The equivalent decision task in a computer is the branch instruction. Notice that we

must begin fetching the instruction following the branch on the very next clock cycle.

Nevertheless, the pipeline cannot possibly know what the next instruction should be,

since it only just received the branch instruction from memory.

❖ One possible solution is to stall immediately after we fetch a branch, waiting until the

pipeline determines the outcome of the branch and knows what instruction address to

fetch from. Let’s assume that we put in enough extra hardware so that we can test

registers, calculate the branch address, and update the PC during the second stage of

the pipeline.

FIGURE 3.18: Pipeline showing stalling on every conditional branch as solution to

control hazards.

BRANCH PREDICTION

 A method of resolving a branch hazard that assumes a given outcome for the branch and

proceeds from that assumption rather than waiting to ascertain the actual outcome.

Static branch prediction

A more sophisticated version of branch prediction would have some branches

predicted as taken and some as untaken. In the case of programming, at the bottom of loops

are branches that jump back to the top of the loop. Since they are likely to be taken and they

branch backward, we could always predict taken for branches that jump to an earlier address.

Dynamic branch prediction

Dynamic hardware predictors, in stark contrast, make their guesses depending on the

behavior of each branch and may change predictions for a branch over the life of a program.

Following our analogy, in dynamic prediction a person would look at how dirty the uniform

was and guess at the formula, adjusting the next prediction depending on the success of

recent guesses. One popular approach to dynamic prediction of branches is keeping a history

for each branch as taken or untaken, and then using the recent past behavior to predict the

future.

PIPELINED DATAPATH

Figure 3.19 shows the single-cycle datapath from with the pipeline stages identified. The

division of an instruction into five stages means a five-stage pipeline, which in turn means

that up to five instructions will be in execution during any single clock cycle. Thus, we must

separate the datapath into five pieces, with each piece named corresponding to a stage of

instruction execution:

1. IF: Instruction fetch

2. ID: Instruction decode and register fi le read

3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

❖ In Figure 3.19, these five components correspond roughly to the way the datapath is

drawn; instructions and data move generally from left to right through the five stages as

they complete execution.

 Fig 3.19: The single-cycle datapath

❖ Returning to our laundry analogy, clothes get cleaner, drier, and more organized as they

move through the line, and they never move backward. There are, however, two

exceptions to this left -to-right flow of instructions:

■ The write-back stage, which places the result back into the register fi le in the middle of

the datapath

■ The selection of the next value of the PC, choosing between the incremented PC and

the branch address from the MEM stage

❖ Data flowing from right to left does not aff ect the current instruction; these reverse data

movements influence only later instructions in the pipeline. Note that the fi rst right-to-

left flow of data can lead to data hazards and the second leads to control hazards.

❖ One way to show what happens in pipelined execution is to pretend that each instruction

has its own datapath, and then to place these datapaths on a timeline to show their

relationship. Figure 3.20 shows the execution of the instructions in Figure 4.27 by

displaying their private datapaths on a common timeline. Instead, we add registers to hold

data so that portions of a single datapath can be shared during instruction execution.

Fig 3.20: Instructions being executed using the single-cycle datapath in Figure 3.19,

assuming pipelined execution.

❖ For example, as Figure 4.34 shows, the instruction memory is used during only one of the

five stages of an instruction, allowing it to be shared by following instructions during the

other four stages.

❖ To retain the value of an individual instruction for its other four stages, the value read

from instruction memory must be saved in a register. Returning to our laundry analogy,

we might have a basket between each pair of stages to hold the clothes for the next step.

FIGURE 3.21: The pipelined version of the datapath

❖ Figure 3.21 shows the pipelined datapath with the pipeline registers highlighted. All

instructions advance during each clock cycle from one pipeline register to the next. The

registers are named for the two stages separated by that register. For example, the pipeline

register between the IF and ID stages is called IF/ID. Notice that there is no pipeline

register at the end of the write-back stage.

❖ All instructions must update some state in the processor—the register file, memory, or the

PC.

EXECUTION OF load INSTRUCTION IN A PIPELINED DATAPATH

Figures 3.22 through 3.24, show the active portions of the datapath highlighted as a load

instruction goes through the five stages of pipelined execution. The five stages are the

following:

1. Instruction fetch: The top portion of Figure 3.22 shows the instruction being read from

memory using the address in the PC and then being placed in the IF/ID pipeline register. The

PC address is incremented by 4 and then written back into the PC to be ready for the next

clock cycle.

2. Instruction decode and register file read: The bottom portion of Figure 3.22 shows the

instruction portion of the IF/ID pipeline register supplying the 16-bit immediate field, which

is sign-extended to 32 bits, and the register numbers to read the two registers. All three values

are stored in the ID/EX pipeline register, along with the incremented PC address.

FIGURE 3.22: IF and ID: First and second pipe stages of an instruction, with the active

portions of the datapath in Figure 3.21 highlighted.

3. Execute or address calculation: Figure 3.23 shows that the load instruction reads the

contents of register 1 and the sign-extended immediate from the ID/EX pipeline register and

adds them using the ALU. That sum is placed in the EX/MEM pipeline register.

FIGURE 3.23 EX: The third pipe stage of a load instruction, highlighting the portions

of the datapath in Figure 3.21 used in this pipe stage.

4. Memory access: The top portion of Figure 3.24 shows the load instruction reading the

data memory using the address from the EX/MEM pipeline register and loading the data into

the MEM/WB pipeline register.

5. Write-back: The bottom portion of Figure 3.24 shows the final step: reading the data from

the MEM/WB pipeline register and writing it into the register file in the middle of the figure.

This walk-through of the load instruction shows that any information needed in a later pipe

stage must be passed to that stage via a pipeline register.

FIGURE 3.24 MEM and WB: The fourth and fifth pipe stages of a load instruction,

highlighting the portions of the datapath in Figure 3.21 used in this pipe stage.

EXECUTION OF Store INSTRUCTION IN A PIPELINED DATAPATH

Walking through a store instruction shows the similarity of instruction execution, as well as

passing the information for later stages. Here are the five pipe stages of the store instruction:

1. Instruction fetch: The instruction is read from memory using the address in the PC and

then is placed in the IF/ID pipeline register. This stage occurs before the instruction is

identified, so the top portion of Figure 3.25 works for store as well as load.

FIGURE 3.25 EX: The third pipe stage of a store instruction

2. Instruction decode and register file read: The instruction in the IF/ID pipeline register

supplies the register numbers for reading two registers and extends the sign of the 16-bit

immediate. These three 32-bit values are all stored in the ID/EX pipeline register. The bottom

portion of Figure 3.25 for load instructions also shows the operations of the second stage for

stores. These first two stages are executed by all instructions, since it is too early to know the

type of the instruction.

3. Execute and address calculation: Figure 3.26 shows the third step; the effective address is

placed in the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 3.26 shows the data being written to memory.

Note that the register containing the data to be stored was read in an earlier stage and stored

in ID/EX. The only way to make the data available during the MEM stage is to place the data

into the EX/MEM pipeline register in the EX stage, just as we stored the effective address

into EX/MEM.

FIGURE 3.26: MEM and WB: The fourth and fifth pipe stages of a store

instruction.

5. Write-back: The bottom portion of Figure 3.26 shows the final step of the store. For this

instruction, nothing happens in the write-back stage.

❖ For the store instruction we needed to pass one of the registers read in the ID stage to the

MEM stage, where it is stored in memory. The data was first placed in the ID/EX pipeline

register and then passed to the EX/MEM pipeline register.

PIPELINED CONTROL

Adding control to the pipelined datapath is referred to as pipelined control. It is started with a

simple design that views the problem through pipeline bars in between the stages. The first

step is to label the control lines on the existing datapath. Figure 3.27 shows those lines.

FIGURE 3.27: The pipelined datapath with the control signals identified.

❖ To specify control for the pipeline, we need only set the control values during each

pipeline stage. Because each control line is associated with a component active in only a

single pipeline stage, we can divide the control lines into five groups according to the

pipeline stage.

1. Instruction fetch: The control signals to read instruction memory and to write the PC are

always asserted, so there is nothing special to control in this pipeline stage.

2. Instruction decode/register file read: As in the previous stage, the same thing happens at

every clock cycle, so there are no optional control lines to set.

3. Execution/address calculation: The signals to be set are RegDst, ALUOp, and ALUSrc

(see Figures 4.48). The signals select the Result register, the ALU operation, and either Read

data 2 or a sign-extended immediate for the ALU.

4. Memory access: The control lines set in this stage are Branch, MemRead, and MemWrite.

The branch equal, load, and store instructions set these signals, respectively. Recall that

PCSrc in Figure 4.48 selects the next sequential address unless control asserts Branch and the

ALU result was 0.

5. Write-back: The two control lines are MemtoReg, which decides between sending the

ALU result or the memory value to the register file, and Reg-Write, which writes the chosen

value. Since pipelining the datapath leaves the meaning of the control lines unchanged, we

can use the same control values.

FIGURE 3.27: The control lines for the final three stages.

❖ Implementing control means setting the nine control lines to these values in each stage for

each instruction. The simplest way to do this is to extend the pipeline registers to include

control information. Since the control lines start with the EX stage, we can create the

control information during instruction decode. Figure 3.27 above shows that these control

signals are then used in the appropriate pipeline stage as the instruction moves down the

pipeline.

1

UNIT V MEMORY & I/O SYSTEMS

Memory - Introduction

Computer memory is the storage space in the computer, where data is to be

processed and instructions required for processing are stored. The memory is

divided into large number of small parts called cells. Each location or cell has a

unique address, which varies from zero to memory size minus one.

Computer memory is of two basic type – Primary memory / Volatile

memory and Secondary memory / non-volatile memory. Random Access Memory

(RAM) is volatile memory and Read Only Memory (ROM) is non-volatile

memory.

MEMORY HIERARCHY

The memory hierarchy separates computer storage into a hierarchy based on

response time. Since response time, complexity, and capacity are related, the levels

may also be distinguished by their performance and controlling technologies.

Memory hierarchy affects performance in computer architectural design, algorithm

predictions, and lower level programming constructs involving locality of

reference.

The Principle of Locality: Program likely to access a relatively small portion of

the address space at any instant of time.

- Temporal Locality: Locality in Time

- Spatial Locality: Locality in Space

2

Temporal Locality (Locality in Time): If an item is referenced, it will tend to be

referenced again soon.

Spatial Locality (Locality in Space): If an item is referenced, items whose

addresses are close by tend to be referenced soon.

3

4

SRAM and DRAM

SRAM and DRAM are the modes of integrated-circuit RAM where SRAM uses

transistors and latches in construction while DRAM uses capacitors and transistors.

These can be differentiated in many ways, such as SRAM is comparatively faster

than DRAM; hence SRAM is used for cache memory while DRAM is used for

main memory.

RAM (Random Access Memory) is a kind of memory which needs constant

power to retain the data in it, once the power supply is disrupted the data will be

5

lost, that’s why it is known as volatile memory. Reading and writing in RAM is

easy and rapid and accomplished through electrical signals.

SRAM TECHNOLOGY

SRAM (Static Random Access Memory) is made up of CMOS technology and

uses six transistors. Its construction is comprised of two cross-coupled inverters to

store data (binary) similar to flip-flops and extra two transistors for access control.

It is relatively faster than other RAM types such as DRAM. It consumes less

power. SRAM can hold the data as long as power is supplied to it.

 Working of SRAM for an individual cell:

✓ To generate stable logic state, four transistors (T1, T2, T3, T4) are organized

in a cross-connected way. For generating logic state 1, node C1 is high, and C2

is low; in this state, T1 and T4 are off, and T2 and T3 are on.

✓ For logic state 0, junction C1 is low, and C2 is high; in the given state T1 and

T4 are on, and T2 and T3 are off. Both states are stable until the direct current

(dc) voltage is applied.

✓ The SRAM address line is operated for opening and closing the switch and to

control the T5 and T6 transistors permitting to read and write. For read

operation the signal is applied to these address line then T5 and T6 gets on, and

6

the bit value is read from line B. For the write operation, the signal is employed

to B bit line, and its complement is applied to B’.

DRAM TECHNOLOGY

DRAM (Dynamic Random Access Memory) is also a type of RAM which

is constructed using capacitors and few transistors. The capacitor is used for

storing the data where bit value 1 signifies that the capacitor is charged and a bit

value 0 means that capacitor is discharged. Capacitor tends to discharge, which

result in leaking of charges.

✓ The dynamic term indicates that the charges are continuously leaking even in

the presence of continuous supplied power that is the reason it consumes more

power. To retain data for a long time, it needs to be repeatedly refreshed which

requires additional refresh circuitry.

✓ Due to leaking charge DRAM loses data even if power is switched on. DRAM

is available in the higher amount of capacity and is less expensive. It requires

only a single transistor for the single block of memory.

Working of typical DRAM cell:

✓ At the time of reading and writing the bit value from the cell, the address line is

activated. The transistor present in the circuitry behaves as a switch that is

closed (allowing current to flow) if a voltage is applied to the address line and

open (no current flows) if no voltage is applied to the address line. For the write

operation, a voltage signal is employed to the bit line where high voltage shows

1, and low voltage indicates 0. A signal is then used to the address line which

enables transferring of the charge to the capacitor.

✓ When the address line is chosen for executing read operation, the transistor

turns on and the charge stored on the capacitor is supplied out onto a bit line

and to a sense amplifier.

7

✓ The sense amplifier specifies whether the cell contains a logic 1 or logic 2 by

comparing the capacitor voltage to a reference value. The reading of the cell

results in discharging of the capacitor, which must be restored to complete the

operation. Even though a DRAM is basically an analog device and used to store

the single bit (i.e., 0,1).

Key Differences Between SRAM and DRAM

1. SRAM is an on-chip memory whose access time is small while DRAM is an

off-chip memory which has a large access time. Therefore SRAM is faster than

DRAM.

2. DRAM is available in larger storage capacity while SRAM is of smaller size.

3. SRAM is expensive whereas DRAM is cheap.

4. The cache memory is an application of SRAM. In contrast, DRAM is used in

main memory.

5. DRAM is highly dense. As against, SRAM is rarer.

6. The construction of SRAM is complex due to the usage of a large number of

transistors. On the contrary, DRAM is simple to design and implement.

7. In SRAM a single block of memory requires six transistors whereas DRAM

needs just one transistor for a single block of memory.

8

8. Power consumption is higher in DRAM than SRAM. SRAM operates on the

principle of changing the direction of current through switches whereas DRAM

works on holding the charges.

Basis for comparison SRAM DRAM

Speed Faster Slower

Size Small Large

Cost Expensive Cheap

Used in Cache memory Main memory

Density Less dense Highly dense

Construction
Complex and uses transistors

and latches.

Simple and uses capacitors and very

few transistors.

Single block of memory

requires
6 transistors Only one transistor.

Charge leakage property Not present
Present hence require power refresh

circuitry

Power consumption Low High

9

10

CACHE MEMORY:

➢ A Cache is a small and very fast temporary storage memory. It is designed to

speed up the transfer of data and instructions. It is located inside or close to the

CPU chip. It is faster than RAM and the data/instructions that are most recently

or most frequently used by CPU are stored in cache.

➢ The data and instructions are retrieved from RAM when CPU uses them for the

first time. A copy of that data or instructions is stored in cache. The next time

the CPU needs that data or instructions, it first looks in cache. If the required

data is found there, it is retrieved from cache memory instead of main

memory. It speeds up the working of CPU.

➢ The cache has a significantly shorter access time than the main memory due to

the applied faster but more expensive implementation technology. If

information fetched to the cache memory is used again, the access time to it will

be much shorter than in the case if this information were stored in the main

memory and the program will execute faster.

11

➢ Time efficiency of using cache memories results from the locality of access to

data that is observed during program execution. We observe here time and

space locality:

The Principle of Locality

The Principle of Locality states that Program access a relatively small portion of

the address space at any instant of time.

• Example: 90% of time in 10% of the code

Two Different Types of Locality

Temporal Locality / Time locality (Locality in Time): It consists in a tendency

to use many times the same instructions and data in programs during neighbouring

time intervals, i.e., If an item is referenced, it will tend to be referenced again soon.

Spatial Locality/ Space locality (Locality in Space): It is a tendency to store

instructions and data used in a program in short distances of time under

neighbouring addresses in the main memory. i.e., if an item is referenced, items

whose addresses are close by tend to be referenced soon.

➢ Due to these localities, the information loaded to the cache memory is used

several times and the execution time of programs is much reduced. Cache can

be implemented as a multi-level memory. A cache memory is maintained by a

special processor subsystem called cache controller.

➢ If there is a cache memory in a computer system, then at each access to a main

memory address in order to fetch data or instructions, processor hardware sends

the address first to the cache memory. The cache control unit checks if the

requested information resides in the cache. If so, we have a "hit" and the

12

requested information is fetched from the cache. The actions concerned with a

read with a hit are shown in the figure below.

 Read implementation in cache memory on hit

➢ If the requested information does not reside in the cache, we have a "miss" and

the necessary information is fetched from the main memory to the cache and to

the requesting processor unit. The information is not copied in the cache as

single words but as a larger block of a fixed volume. The actions executed in a

cache memory on "miss" are shown below.

Read implementation in cache memory on miss

If there are two cache levels, then on "miss" at the first level, the address is

transferred in a hardwired way to the cache at the second level. If at this level a

"hit" happens, the block that contains the requested word is fetched from the

second level cache to the first level cache. If a "miss" occurs also at the second

13

cache level, the blocks containing the requested word are fetched to the cache

memories at both levels. The size of the cache block at the first level is from 8 to

several tens of bytes (a number must be a power of 2). The size of the block in the

second level cache is many times larger than the size of the block at the first level.

The cache memory can be connected in different ways to the processor and the

main memory:

• As an additional subsystem connected to the system bus that connects the

processor with the main memory,

• As a subsystem that intermediates between the processor and the main memory,

• As a separate subsystem connected with the processor, in parallel regarding the

main memory.

Categories of Cache Misses

We can subdivide cache misses into one of three categories:

• A compulsory miss (or cold miss) : It is also known as cold start misses or first

references misses. These misses occur when the first access to a block happens.

Block must be brought into the cache.

• A conflict miss: It is also known as collision misses or interference misses.

These misses occur when several blocks are mapped to the same set or block

frame. These misses occur in the set associative or direct mapped block

placement strategies.

• A capacity miss: These misses occur when the program working set is much

larger than the cache capacity. Since Cache cannot contain all blocks needed for

program execution, so cache discards these blocks.

MEASURING AND IMPROVING CACHE PERFORMANCE

14

We begin by examining ways to measure and analyze cache performance.

CPU time can be divided into the clock cycles that the CPU spends executing the

program and the clock cycles that the CPU spends waiting for the memory system.

Measuring the Cache Performance

We assume that the costs of cache accesses that are hits are part of the

normal CPU execution cycles. Thus

CPU Time = (CPU execution clock cycles + Memory-stall clock cycles) x

Clock cycle time

The memory-stall clock cycles come primarily from cache misses, and we

make that assumption here. In real processors, the stalls generated by reads and

writes can be quite complex, and accurate performance prediction usually requires

very detailed simulations of the processor and memory system.

Memory-stall clock cycles can be defined as the sum of the stall cycles

coming from reads plus those coming from write:

The read-stall cycles can be defined in terms of the number of read accesses

per program, the miss penalty in clock cycles for a read, and the read miss rate:

Writes are more complicated. For a write-through scheme, we have two

sources of stalls: write misses, which usually require that we fetch the block before

continuing the write, and write buffer stalls, which, occur when the write buffer is

full when a write occurs. Thus, the cycles stalled for writes equals the sum of these

two:

Since the write buffer stalls depend on the proximity of writes, and not just

the frequency, it is not possible to give a simple equation to compute such stalls.

15

Write-back schemes also have potential additional stalls arising from the

need to write a cache block back to memory when the block is replaced. In most

write-through cache organizations, the read and write miss penalties are the same.

If we assume that the write buffer stalls are negligible, we can combine the reads

and writes by using a single miss rate and the miss penalty:

We can also factor this as,

CACHE MAPPING TECHNIQUES

Memory mapping is the (complex) process that associates an address value

(usually a 32 or 64 bits number) to some existing physical location in the hardware.

This location can be in RAM, in a cache of some level, or even on the hard disk!

During program execution, data can move from one location to another, and

possibly be duplicated.

Mapping Function

The correspondence between the main memory blocks and those in the

cache is specified by a mapping function.

The different Cache mapping techniques are as follows:-

1) Direct Mapping

16

2) Associative Mapping

3) Set Associative Mapping

Consider a cache consisting of 128 blocks of 16 words each, for total of 2048(2K)

works and assume that the main memory is addressable by 16 bit address. Main

memory is 64K which will be viewed as 4K blocks of 16 works each.

(1) Direct Mapping:-

➢ The simplest way to determine cache locations in which store Memory blocks is

direct Mapping technique.

➢ In this block J of the main memory maps on to block J modulo 128 of the

cache. Thus main memory blocks 0,128,256,….is loaded into cache is stored at

block 0. Block 1,129,257,….are stored at block 1 and so on.

➢ Placement of a block in the cache is determined from memory address. Memory

address is divided into 3 fields, the lower 4-bits selects one of the 16 words in a

block.

➢ When new block enters the cache, the 7-bit cache block field determines the

cache positions in which this block must be stored.

➢ The higher order 5- in cache. They identify which of the 32 blocks that are

mapped into this cache bits of the memory address of the block are stored in 5

tag bits associated with its location position are currently resident in the cache.

Advantages: It is easy to implement.

17

Drawbacks: Since more than one memory block is mapped onto a given

cache block position, contention may arise for that position even when the cache is

not full. Contention is resolved by allowing the new block to overwrite the

currently resident block. This method is not very flexible.

(2) Fully Associative Mapping:-

➢ This is more flexible mapping method, in which main memory block can be

placed into any cache block position.

➢ In this, 12 tag bits are required to identify a memory block when it is resident in

the cache.

➢ The tag bits of an address received from the processor are compared to the tag

bits of each block of the cache to see, if the desired block is present. This is

known as Associative Mapping technique.

➢ Cost of an associated mapped cache is higher than the cost of direct-mapped

because of the need to search all 128 tag patterns to determine whether a block

is in cache. This is known as associative search.

(3) Set-Associated Mapping:-

➢ It is the combination of direct and associative mapping technique.

➢ Cache blocks are grouped into sets and mapping allow block of main memory

reside into any block of a specific set. Hence contention problem of direct

18

mapping is eased, at the same time; hardware cost is reduced by decreasing the

size of associative search.

➢ For a cache with two blocks per set. In this case, memory block 0, 64,

128,…..,4032 map into cache set 0 and they can occupy any two block within

this set.

➢ Having 64 sets means that the 6 bit set field of the address determines which set

of the cache might contain the desired block. The tag bits of address must be

associatively compared to the tags of the two blocks of the set to check if

desired block is present. This is known as two way associative search.

Advantages:

The contention problem of the direct-mapping is eased by having a few

choices for block placement. At the same time, the hardware cost is reduced by

decreasing the size of the associative search.

M - Way Set Associativity:

We can also think of all block placement strategies as a variation on set

associativity. The following figure shows the possible associativity structures for

an eight-block cache.

• A direct-mapped cache is simply a one-way set-associative cache: each cache

entry holds one block and each set has one element.

19

• A fully-associative cache with m entries is simply an m-way set-associative

cache: it has one set with m blocks, and an entry can reside in any block within

that set.

The advantage of increasing the degree of associativity is that it usually

decreases the miss rate. The main disadvantage is the potential increase in the hit

time.

VIRTUAL MEMORY

Introduction

➢ Virtual memory is a technique that allows the execution of processes that may

not be completely in memory. One major advantage of this scheme is that

programs can be larger than physical memory.

➢ Virtual memory abstracts main memory into an extremely large, uniform array

of storage, separating logical memory as viewed by the user from physical

memory.

➢ Users would be able to write programs for an extremely large virtual-address

space, simplifying the programming task.

➢ Less I/O would be needed to load or swap each user program into memory, so

each user program would run faster.

➢ Virtual memory is the separation of user logical memory from physical

20

memory. This separation allows an extremely large virtual memory to be

provided for programmers when only a smaller physical memory is available.

Diagram showing virtual memory that is larger than physical memory

Demand Paging

➢ Virtual memory is commonly implemented by demand paging.

➢ A demand-paging system is similar to a paging system with swapping.

Pages are loaded only on demand and not in advance.

➢ Processes reside on secondary memory (which is usually a disk). When the

process is to be executed, it is swapped in to memory. Rather than swapping the

entire process into memory, however, use a lazy swapper. A lazy swapper

21

never swaps a page into memory unless that page will be needed.

Basic Concepts

Instead of swapping in a whole process, the pager brings only those necessary

pages into memory. Thus, it avoids reading into memory pages that will not be

used anyway, decreasing the swap time and the amount of physical memory

needed.

Diag: Transfer of a paged memory to contiguous disk space.

➢ While the process executes and accesses pages that are memory resident,

execution proceeds normally.

➢ But what happens if the process tries to access a page that was not brought into

memory? Access to a page marked invalid causes a page-fault trap.

➢ The process can now access the page as though it had always been in memory.

When the disk read is complete, we modify the internal table kept with the

22

process and the page table to indicate that the page is now in memory.

Pure demand paging:

Never bring a page into memory until it is required. The hardware to support

demand paging is the same as the hardware for paging and swapping:

Page table: This table has the ability to mark an entry invalid through a valid-

invalid bit or special value of protection bits.

Secondary memory: This memory holds those pages that are not present in main

memory. The secondary memory is usually a high-speed disk. It is known as the

swap device, and the section of disk used for this purpose is known as swap space.

PAGING IN VIRTUAL MEMORY

➢ Paging is a memory-management scheme that permits the physical-address

space of a process to be noncontiguous. Paging avoids the considerable problem

of fitting the varying-sized memory chunks onto the backing store, from which

most of the previous memory-management schemes suffered. When some code

fragments or data residing in main memory need to be swapped out, space must

be found on the backing store.

Fig: Paging Hardware

23

Basic Method:

Physical memory is broken into fixed-sized blocks called frames. Logical memory

is also broken into blocks of the same size called pages. When a process is to be

executed, its pages are loaded into any available memory frames from the backing

store. The backing store is divided into fixed-sized blocks that are of the same size

as the memory frames.

 page-number page-offset

 m-n n

Where p is an index into the page table and d is the displacement within the page.

➢ The hardware support for paging is illustrated in the above Figure. Every

address generated by the CPU is divided into two parts: a page number (p) and

a page offset (d). The page number is used as an index into a page table. The

page table contains the base address of each page in physical memory. This

base address is combined with the page offset to define the physical memory

address that is sent to the memory unit. The paging model of memory is shown

in the Figure given below.

➢ The page size (like the frame size) is defined by the hardware. The size of a

page is typically a power of 2, varying between 512 bytes and 16 MB per page,

depending on the computer architecture. The selection of a power of 2 as a page

size makes the translation of a logical address into a page number and page

offset particularly easy.

P d

24

Diag: Paging model of logical and physical memory

LOGICAL Versus PHYSICAL ADDRESS SPACE

➢ Logical address is generated by the CPU. Physical address is the address of

main memory and it is loaded in to the memory address register.

➢ The compile-time and load-time address-binding methods generate identical

logical and physical addresses. Usually the logical address is referred as a

virtual address.

➢ The set of all logical addresses generated by a program is a logical-address

space; the set of all physical addresses corresponding to these logical addresses

is a physical-address space. Thus, in the execution-time address-binding

scheme, the logical and physical-address spaces differ.

➢ The run-time mapping from virtual to physical addresses is done by a hardware

device called the memory-management unit (MMU).

➢ As illustrated in the given figure, the base register is now called a relocation

register. The value in the relocation register is added to every address generated

by a user process at the time it is sent to memory. For example, if the base is at

14000, then an attempt by the user to address location 0 is dynamically

relocated to location 14000; an access to location 346 is mapped to location

14346.

25

Diag: Address translation using a relocation register in MMU

➢ The user program never sees the real physical addresses. The program can

create a pointer to location 346, store it in memory, manipulate it, and compare

it to other addresses-all as the number 346. The user program deals with logical

addresses. The memory-mapping hardware converts logical addresses into

physical addresses.

ADDRESS TRANSLATION – EXAMPLE

Consider the memory shown in the following Figure. Using a page size of 4 bytes

and a physical memory of 32 bytes (8 pages), we show how the user's view of

memory can be mapped into physical memory. Logical address 0 is page 0, offset

0. Indexing into the page table, we find that page 0 is in frame 5. Thus, logical

address 0 maps to physical address 20 (= (5 x 4) + 0). Logical address 3 (page 0,

offset 3) maps to physical address 23 (= (5 x 4) + 3). Logical address 4 is page 1,

offset 0; according to the page table, page 1 is mapped to frame 6. Thus, logical

address 4 maps to physical address 24 (= (6 x 4) + 0). Logical address 13 maps to

physical address 9.

26

Fig: Paging example for 32-byte memory with 4-byte pages

➢ Generally, page sizes have grown over time as processes, data sets, and main

memory have become larger. Today pages typically are between 4 KB and 8

KB, and some systems support even larger page sizes. Some CPUs and kernels

even support multiple page sizes. For instance, Solaris uses 8 KB and 4 MB

page sizes, depending on the data stored by the pages. Researchers are now

developing variable on-the-fly page-size support. Each page-table entry is

usually 4 bytes long, but that size can vary as well.

TLB (TRANSLATION LOOK-ASIDE BUFFER)

Each operating system has its own methods for storing page tables. Most allocate a

page table for each process. A pointer to the page table is stored with the other

register values (like the instruction counter) in the process control block. When the

dispatcher is told to start a process, it must reload the user registers and define the

correct hardware page-table values from the stored user page table.

 The page table is implemented as a set of dedicated registers. These registers

should be built with very high-speed logic to make the paging-address translation

efficient. The address consists of 16 bits, and the page size is 8 KB. The page table

thus consists of eight entries that are kept in fast registers.

27

 The standard solution to this problem is to use a special, small, fast lookup

hardware cache, called translation look-aside buffer (TLB). The TLB is

associative, high-speed memory. Each entry in the TLB consists of two parts: L a

key (or tag) and a value. Typically, the number of entries in a TLB is small, often

numbering between 64 and 1,024.

 Fig: Paging Hardware with TLB

The TLB is used with page tables in the following way.

➢ The TLB contains only a few of the page-table entries. When a logical address

is generated by the CPU, its page number is presented to the TLB.

➢ If the page number is found, its frame number is immediately available and is

used to access memory.

 The percentage of times that a particular page number is found in the TLB is

called the hit ratio. An 80-percent hit ratio means that we find the desired page

number in the TLB 80 percent of the time. If it takes 20 nanoseconds to search the

TLB, and 100 nanoseconds to access memory, then a mapped- memory access

takes 120 nanoseconds when the page number is in the TLB.

To find the effective memory-access time, we must weigh each case by its

probability:

 Effective access time = 0.80 x 120 + 0.20 x 220 = 140 nanoseconds.

28

 PROTECTION in TLB

Protection bits are kept in the page table. The valid-invalid bit scheme can be used

for this purpose. When this bit is set to "valid," this value indicates that the

associated page is both legal and in memory. If the bit is set to "invalid," this value

indicates that the page either is not valid (that is, not in the logical address space of

the process), or is valid but is currently on the disk.

➢ The page-table entry for a page that is brought into memory is set as usual, but

the page table entry for a page that is not currently in memory is simply marked

invalid, or contains the address of the page on disk. This situation is depicted in

the following figure.

Fig: Valid (v) or invalid (i) bit in a page table.

➢ The paging hardware, in translating the address through the page table, will

notice that the invalid bit is set, causing a trap to the operating system. This trap

is the result of the operating system's failure to bring the desired page into

29

memory, rather than an invalid address error as a result of an attempt to use an

illegal memory address.

PAGE REPLACEMENT ALGORITHMS

30

31

32

INPUT / OUTPUT SYSTEM

➢ The main data-processing functions of a computer involve its CPU and external

memory. The CPU fetches instructions and data from memory, processes them,

and eventually stores the results back in memory.

➢ The other system components like secondary memory, user interface devices,

and so on constitute the input/output (I/O) system. One of the basic features of a

computer is its ability to exchange data with other devices. The data transfer

rate of peripherals is much slower than that of the memory or CPU. The I/O

subsystem provides the mechanism for communications between CPU and the

outside world.

➢ The connection between the I/O devices, processor, and memory are

historically called buses, although the term mean shared parallel wires and most

I/O connections today are closer to dedicated serial lines. Communication

among the devices and the processor uses both interrupts and protocols on the

interconnection.

I/O devices are incredibly diverse. Three characteristics are useful in

organizing this wide variety:

1. Behavior: Input (read once), output (write only, cannot be read), or storage

(can be read and usually rewritten).

33

2. Partner: Either a human or a machine is at the other end of the I/O device,

either feeding data on input or reading data on the output.

3. Data rate: The peak rate at which data can be transferred between the I/O

device and the main memory or processor. It is useful to know the maximum

demand the device may generate when designing an I/O system.

Accessing I/O Devices

A simple arrangement to connect I/O devices to a computer is to use a single

bus arrangement. The bus enables all the devices connected to it to exchange

information. Typically it consists of three sets of lines used to carry address, data,

and control signals. Each I/O device is assigned a unique set of addresses. When

the processor places a particular address on the address lines, the device that

recognizes this address responds to the commands issued on the control lines. The

processor requests either a read or a write operation, and the requested data are

transferred over the data lines.

I/O Interface

➢ The address decoder, the data and status registers, and the control circuitry

required to coordinate I/O transfers constitute the device’s interface circuit.

➢ The address decoder enables the device to recognize its address when this

address appears on the address lines. The data register holds the data being

transferred to or from the processor.

34

➢ The status register contains information relevant to the operation of the I/O

device. Both the data and status registers are connected to the data bus and

assigned unique addresses.

➢ I/O devices operate at speeds that are vastly different from that of the processor.

When a human operator is entering characters at a keyboard, the processor is

capable of executing millions of instructions between successive character

entries. An instruction that reads a character from the keyboard should be

executed only when a character is available in the input buffer of the keyboard

interface. Also, we must make sure that an input character is read only once.

➢ For an input device such as keyboard, a status flag, SIN, is included in the

interface circuit as part of the status register. This flag is set to 1 when a

character is entered at the keyboard and cleared to 0 once this character is read

by the processor. A similar procedure can be used to control output operations

using an output status flag, SOUT.

I/O Control Methods

Input-Output operations are distinguished by the extent to which the CPU is

involved in their execution. I/O operation refers to a data transfer between an IO

device and memory, or between an IO device and the CPU.

Commonly used mechanisms for implementing IO operations

35

There are three commonly used methods used for implementing IO operations.

They are

1. Programmed I/O

If I/O operations are completely controlled by the CPU, i.e., the CPU executes

programs that initiate, direct, and terminate the IO operations, then the computer is

said to be using programmed IO. This type of IO control can be implemented with

little or no special hardware, but causes the CPU to spend a lot of time performing

relatively trivial IO-related functions.

2. Direct Memory Access (DMA)

A modern hardware design enables an IO device to transfer a block of information

to or from memory without CPU intervention. This task requires the IO device to

generate memory addresses and transfer data to or from the bus connecting it to

memory via its interface controller; in other words, the IO device must be able to

act as a bus master.

The CPU is still responsible for initiating each block transfer. The IO device

interface controller can then carry out the transfer without further program

execution by the CPU. The CPU and IO controller interact only when the CPU

must yield control of the memory bus to the IO controller in response to requests

from the latter. This level of IO control is called Direct Memory Access (DMA)

and the IO device interface control circuit is called a DMA Controller.

3. Interrupts

The DMA controller can also be provided with circuits enabling it to request

service from the CPU, that is, execution of a specific program to service an IO

device. This type of request is called an Interrupt and it frees the CPU from the

task of periodically testing the status of IO devices.

Unlike a DMA request, which merely requests temporary access to the system

bus, an interrupt request causes the CPU to switch programs by saving its previous

program state and transferring control to a new interrupt-handling program. After

36

the interrupts has been serviced, the CPU can resume execution of the interrupted

program.

DIRECT MEMORY ACCESS (DMA)

A special control unit is provided to allow transfer of a block of data directly

between an external device and the main memory, without continuous intervention

by the processor. This approach is called direct memory access, or DMA.

(OR)

DMA stands for "Direct Memory Access" and is a method of transferring data

from the computer's RAM to another part of the computer without processing it

using the CPU. While most data that is input or output from your computer is

processed by the CPU, some data does not require processing, or can be processed

by another device.

 In these situations, DMA can save processing time and is a more efficient

way to move data from the computer's memory to other devices. In order for

devices to use direct memory access, they must be assigned to a DMA channel.

Each type of port on a computer has a set of DMA channels that can be assigned to

each connected device.

• Transfer of data between a fast storage device and memory is limited by the

speed of CPU

• Remove CPU from the path of communication and the technique is DMA

37

➢ DMA transfers are performed by a control circuit that is part of the I/O device

interface. We refer to this circuit as a DMA controller. The DMA controller

performs the functions that would normally be carried out by the processor

when accessing the main memory.

➢ For each word transferred, it provides the memory address and all the bus

signals that control data transfer. Since it has to transfer blocks of data, the

DMA controller must increment the memory address for successive words and

keep track of the number of transfers.

➢ Although a DMA controller can transfer data without intervention by the

processor, its operation must be under the control of a program executed by the

processor.

➢ To initiate the transfer of a block of words, the processor sends the starting

address, the number of words in the block, and the direction of the transfer. On

receiving this information, the DMA controller proceeds to perform the

requested operation. When the entire block has been transferred, the controller

informs the processor by raising an interrupt signal.

➢ While a DMA transfer is taking place, the program that requested the transfer

cannot continue, and the processor can be used to execute another program.

After the DMA transfer is completed, the processor can return to the program

that requested the transfer. I/O operations are always performed by the

operating system of the computer in response to a request from an application

program.

➢ The OS is also responsible for suspending the execution of one program and

starting another. Thus, for an I/O operation involving DMA, the OS puts the

program that requested the transfer in the Blocked state initiates the DMA

operation, and starts the execution of another program. When the transfer is

completed, the DMA controller informs the processor by sending an interrupt

38

request. In response, the OS puts the suspended program in the runnable state so

that it can be selected by the scheduler to continue execution.

➢ Cycle Stealing –The DMA controller must use the bus only when the

processor does not need it, or it must force the processor to suspend operation

temporarily. This technique is referred to as cycle stealing. It allows DMA

controller to transfer one data word at a time after which it must return control

of the buses to the CPU

DMA Controller

➢ A simple DMA controller is a standard component in modern PCs, and many

bus-mastering I/O cards contain their own DMA hardware.

➢ Handshaking between DMA controllers and their devices is accomplished

through two wires called the DMA-request and DMA-acknowledge wires.

➢ While the DMA transfer is going on the CPU does not have access to the PCI

bus(including main memory), but it does have access to its internal registers

and primary and secondary caches.

➢ DMA can be done in terms of either physical addresses or virtual addresses that

are mapped to physical addresses. The latter approach is known as Direct

Virtual Memory Access, DVMA, and allows direct data transfer from one

memory-mapped device to another without using the main memory chips.

The controller is integrated into the processor board and manages all DMA data

transfers. Transferring data between system memory and an I/O device requires

two steps.

i. Data goes from the sending device to the DMA controller and then to the

receiving device. The microprocessor gives the DMA controller the location,

destination, and amount of data that is to be transferred. Then the DMA

controller transfers the data, allowing the microprocessor to continue with

other processing tasks. When a device needs to use the Micro Channel bus to

39

send or receive data, it competes with all the other devices that are trying to

gain control of the bus. This process is known as arbitration.

ii. The DMA controller does not arbitrate for control of the BUS instead; the

I/O device that is sending or receiving data (the DMA slave) participates in

arbitration.

➢ DMA controller takes over the buses to manage the transfer directly between

the I/O device and memory

➢ Bus Request (BR) –used by the DMA controller to request the CPU to claim or

give up control of the buses.

➢ CPU activates bus grant to inform the external DMA that the buses are in high

impedance state.

➢ Burst transfer –block sequence consisting of memory words is transferred in a

continuous bus when DMA controller is the master.

INTERRUPTS

➢ An interrupt is a signal to the processor emitted by hardware or software

indicating an event that needs immediate attention. An interrupt alerts the

processor to a high-priority condition requiring the interruption of the current

code the processor is executing.

➢ The processor responds by suspending its current activities, saving its state,

and executing a function called an interrupt handler (or an interrupt service

routine, ISR) to deal with the event. This interruption is temporary, and, after

the interrupt handler finishes, the processor resumes normal activities.

40

There are two types of interrupts: hardware interrupts and software

interrupts.

➢ Hardware interrupts are used by devices to communicate that they require

attention from the operating system. Internally, hardware interrupts are

implemented using electronic alerting signals that are sent to the processor

from an external device, which is either a part of the computer itself, such as a

disk controller, or an external peripheral.

➢ For example, pressing a key on the keyboard or moving the mouse triggers

hardware interrupts that cause the processor to read the keystroke or mouse

position. The act of initiating a hardware interrupt is referred to as an interrupt

request (IRQ).

➢ A software interrupt is caused either by an exceptional condition in the

processor itself, or a special instruction in the instruction set which causes an

interrupt when it is executed. The former is often called a trap or exception

(For example a divide-by-zero exception) and is used for errors or events

occurring during program execution.

➢ Each interrupt has its own interrupt handler. The number of hardware

interrupts is limited by the number of interrupt request (IRQ) lines to the

processor, but there may be hundreds of different software interrupts.

Interrupts are a commonly used technique for computer multitasking,

especially in real-time computing. Such a system is said to be interrupt-driven.

Interrupts Handling

 The interrupt mechanism allows devices to signal the CPU and to force

execution of a particular piece of code.

 When an interrupt occurs, the program counter’s value is changed to point to

an interrupt handler routine (also commonly known as a device driver) that

takes care of the device.

41

 The interface between the CPU and I/O device includes the following signals

for interrupting:

 The I/O device asserts the interrupt request signal when it wants service

from the CPU; and

 The CPU asserts the interrupt acknowledge signal when it is ready to

handle the I/O device’s request.

The interrupt mechanism:

 The interrupt mechanism allows devices to signal the CPU and to force

execution of a particular piece of code.

 When an interrupt occurs, the program counter’s value is changed to point

to an interrupt handler routine (also commonly known as a device driver)

that takes care of the device.

 The interface between the CPU and I/O device includes the following

signals for interrupting:

■ the I/O device asserts the interrupt request signal when it wants service

from the CPU; and

42

■ The CPU asserts the interrupt acknowledge signal when it is ready to

handle the I/O device’s request.

Priorities and Vectors

 Interrupt priorities allow the CPU to recognize some interrupts as more

important than others, and

 Interrupt vectors allow the interrupting device to specify its handler.

 The priority mechanism must ensure that a lower-priority interrupt does not

occur when a higher-priority interrupt is being handled. The decision process

is known as masking.

 Asking an I/O device whether it is finished by reading its status register is

often called polling.

 The highest-priority interrupt is normally called the non maskable interrupt

(NMI).

 Most CPUs provide a relatively small number of interrupt priority levels,

such as eight. When several devices naturally assume the same priority. You

can combine polling with prioritized interrupts to efficiently handle the

devices.

 Interrupt request signals

43

 The CPU will call the interrupt handler associated with this priority; that

handler does not know which of the devices actually requested the interrupt.

The handler uses software polling to check the status of each device: In this

example, it would read the status registers of 1, 2, and 3 to see which of

them ready and requesting service is. The given example illustrates how

priorities affect the order in which I/O requests are handled.

➢ Vectors provide flexibility in a different dimension, namely, the ability to

define the interrupt handler that should service a request from a device. Figure

shows the hardware structure required to support interrupt vectors. In addition

to the interrupt request and acknowledge lines, additional interrupt vector lines

run from the devices to the CPU.

44

➢ After a device’s request is acknowledged, it sends its interrupt vector over those

lines to the CPU. The CPU then uses the vector number as an index in a table

stored in memory as shown in Figure 3.5. The location referenced in the

interrupt vector table by the vector number gives the address of the handler.

➢ There are two important things to notice about the interrupt vector mechanism.

First, the device, not the CPU, stores its vector number. In this way, a device

can be given a new handler simply by changing the vector number it sends,

without modifying the system software. For example, vector numbers can be

changed by programmable switches.

➢ The second thing to notice is that there is no fixed relationship between vector

numbers and interrupt handlers. The interrupt vector table allows arbitrary

relationships between devices and handlers. The vector mechanism provides

great flexibility in the coupling of hardware devices and the software routines

that service them.

➢ Most modern CPUs implement both prioritized and vectored interrupts.

Priorities determine which device is serviced first, and vectors determine what

routine is used to service the interrupt. The combination of the two provides a

rich interface between hardware and software.

BUS STRUCTURE

45

A computer system is made up of 3 major components. Central Processing Unit

(CPU) that processes data, Memory Unit that holds data for processing and the

Input and Output Unit that is used by the user to communicate with the computer.

But how do these different components of a CPU communicate with each other?

They use a special electronic communication system called the BUS. The

computer bus carries lots of information using numerous pathway called circuit

lines. The System bus consists of data bus, address bus and control bus

✓ Data bus- A bus which carries data to and from memory/IO is called as data

bus

✓ Address bus- This is used to carry the address of data in the memory and its

width is equal to the number of bits in the MAR of the memory.

For example, if a computer memory of 64K has 32 bit words then the computer

will have a data bus of 32 bits wide and the address bus of 16 bits wide.

✓ Control Bus- carries the control signals between the various units of the

computer. Ex: Memory Read/write, I/O Read/write

Two types of Bus organizations:

• Single Bus organization

• Two bus Organization

Single Bus Architecture

• Three units share the single bus. At any given point of time, information can

be transferred between any two units

• Here I/O units use the same memory address space (Memory mapped I/O)

46

• So no special instructions are required to address the I/O, it can be accessed

like a memory location

• Since all the devices do not operate at the same speed, it is necessary to

smooth out the differences in timings among all the devices A common

approach used is to include buffer registers with the devices to hold the

information during transfers

Ex: Communication between the processor and printer

Two Bus Architecture

• Various units are connected through two independent buses

• I/O units are connected to the processor though an I/O bus and Memory is

connected to the processor through the memory bus

• I/O bus consists of address, data and control bus Memory bus also consists

of address, data and control bus. In this type of arrangements processor

completely supervises the transfer of information to and from I/O units. All

the information is first taken to processor and from there to the memory.

Such kind of transfers is called as program controlled transfer.

Bus arbitration process

Multiple devices may need to use the bus at the same time so must have a way to

arbitrate multiple requests.

Bus Arbitration refers to the process by which the current bus master accesses

and then leaves the control of the bus and passes it to another bus requesting

processor unit. The controller that has access to a bus at an instance is known as

a Bus master.

47

• Bus Arbitration Mechanism between the System buses are shared between the

controllers and an IO processor and multiple controllers that have to access the

bus, but only one of them can be granted the bus master status at any one

instance

• Bus master has the access to the bus at an instance controller and an IO

processor and multiple controllers that have to access the bus, but only one of

them can be granted the bus master status at any one instance

• Bus master has the access to the bus at an instance.

There are two approaches to bus arbitration:

1. Centralized bus arbitration – A single bus arbiter performs the required

arbitration.

2. Distributed bus arbitration – All devices participate in the selection of the

next bus master.

Three methods in Centralized bus arbitration process

• Daisy Chain method

• Fixed Priority or Independent Bus Requests and Grant method

• Polling or Rotating Priority method

DAISY CHAINING

o It is a centralized bus arbitration method. During any bus cycle, the bus

master may be any device – the processor or any DMA controller unit,

connected to the bus.

o Bus control passes from one bus master to the next one, then to the next and

so on. That is from controller units C0 to C1, then to C2, then U3, and so on.

48

Sequence of Signals in the arbitration process

➢ Bus-grant signal (BG) which functions like a token is first sent to C0.

➢ If C0 does not need the bus, it passes BG to C1.

➢ A controller needing the bus raises a bus request (BR) signal.

➢ A bus-busy (BUSY) signal generates when that controller becomes the bus

master.

Signals in the arbitration process

➢ When bus master no longer needs the bus, it deactivates BR and BUSY signal

also deactivates.

➢ Another BG is issued and passed from C0 to down the priority controllers one

by one

➢ [For example, COM2 to COM1 in IBM PC]

Advantages

• Simplicity and Scalability.

• The user can add more devices anywhere along the chain, up to a certain

maximum value.

Disadvantages

• The value of priority assigned to a device is depends on the position of

master bus.

49

• Propagation delay is arises in this method.

• If one device fails then entire system will stop working.

POLLING OR ROTATING PRIORITY METHOD

T

Diag: Polling method for Bus Sharing by Multiple Processors or controllers

➢ BUSY activates when that controller becomes the bus master. When BR

deactivates, then BG and BUSY also deactivates and counts increment

starts.

➢ Polling method advantage is that the controller next to the current bus master

gets the highest priority to the access the bus after the current bus master

finishes the operations through the bus.

➢ A poll counts value is sent to the controllers and is incremented. Assume

that there are 8 controllers. Three poll count signals p2, p1, p0 successively

change from 000, 001, …, 110, 111, 000, … If on count = i, a BR signal is

received then counts increment stops, BG is sent.

Advantages:

• This method does not favor any particular device and processor.

• The method is also quite simple.

• If one device fails then entire system will not stop working.

Disadvantages:

50

• Adding bus masters is different as increases the number of address lines of

the circuit.

FIXED PRIORITY or INDEPENDENT REQUEST AND GRANT METHOD

Controller separate BR signals, BR0, BR1,…, BRn.

• Separate BG signals, BG0, BG1, …, BGn for the controllers.

Diag: Independent bus request method

• An ith controller sends BRi (i-th bus request signal) and when it receives BGi

(ith bus grant signal), it uses the bus and then BUSY signal activates.

• Any controller, which finds active BUSY, does not send BR from it.

Advantages

▪ This method generates fast response.

Disadvantages

▪ Hardware cost is high as large number of control lines is required.

DISTRIBUTED BUS ARBITRATION:

Here, all the devices participate in the selection of the next bus master. Each

device on the bus is assigned a4 bit identification number. The priority of the

device will be determined by the generated ID.

51

➢ When one or more devices request control of the bus, they assert the start

arbitration signal and place their 4-bit identification numbers on arbitration

lines through ARB0 to ARB3.

➢ Each device compares the code and changes its bit position accordingly. It

does so by placing a 0 at the input of their drive.

➢ The distributed arbitration is highly reliable because the bus operations are not

dependent on devices.

INTERFACE CIRCUITS

An I/O interface consists of the circuitry required to connect an I/O device to a

computer bus. On one side of the interface, we have bus signals. On the other side,

we have a data path with its associated controls to transfer data between the

interface and the I/O device – port. We have two types:

• Parallel port

• Serial port

A parallel port transfers data in the form of a number of bits (8 or 16)

simultaneously to or from the device. A serial port transmits and receives data one

bit at a time. Communication with the bus is the same for both formats. The

52

conversion from the parallel to the serial format, and vice versa, takes place inside

the interface circuit. In parallel port, the connection between the device and the

computer uses a multiple-pin connector and a cable with as many wires. This

arrangement is suitable for devices that are physically close to the computer. In

serial port, it is much more convenient and cost-effective where longer cables are

needed.

Typically, the functions of an I/O interface are:

• Provides a storage buffer for at least one word of data

• Contains status flags that can be accessed by the processor to determine whether

the buffer is full or empty

• Contains address-decoding circuitry to determine when it is being addressed by

the processor

• Generates the appropriate timing signals required by the bus control scheme

• Performs any format conversion that may be necessary to transfer data between

the bus and the I/O device, such as parallel-serial conversion in the case of a serial

port

Parallel Port

Input Port

Example1: Keyboard to Processor

Observe the parallel input port that connects the keyboard to the processor. Now,

whenever the key is tapped on the keyboard an electrical connection is established

that generates an electrical signal. This signal is encoded by the encoder to convert

it into ASCII code for the corresponding character pressed at the keyboard (as

shown in below figure)

53

Fig: Parallel Input Port that connect Keyboard and Processor

The Hardware components needed are

– Status flag, SIN

– R/~W

– Master-ready

– Address decoder

When a key is pressed, the valid signal changes from 0 to 1 causing the ASCII

code to be loaded into DATAIN and SIN to be set to 1. The status flag SIN is

cleared to 0 when the processor reads the contents of the DATAIN register

Example 2: Printer to processor

The hardware components needed for connecting a printer to a processor are:

The circuit of output interface, and

– Slave-ready

– R/W

– Master-ready

– Address decoder

– Handshake control

54

The input and output interfaces can be combined into a single interface. The

general purpose parallel interface circuit can be configured in a variety of ways.

For increased flexibility, the circuit makes it possible for some lines to serve as

inputs and some lines to serve as outputs, under program control.

Output Port

When the display unit is ready to display a character, it activates its ready line to 1

which setups the DOUT flag in the DISP_STATUS register to 1. This indicates the

processor and the processor places the character to the DISP_DATA register.

As soon as the processor loads the character in the DISP_DATA the DOUT flag

setbacks to 0 and the New-data line to 1. Now as the display senses that the new-

data line is activated it turns the ready line to 0 and accepts the character in the

DISP_DATA register to display it.

Serial Port

Opposite to the parallel port, the serial port connects the processor to devices

that transmit only one bit at a time. Here on the device side, the data is

transferred in the bit-serial pattern, and on the processor side, the data is

transferred in the bit-parallel pattern.

55

The transformation of the format from serial to parallel i.e., from device to

processor, and from parallel to serial i.e., from processor to device is made

possible with the help of shift registers (input shift register & output shift

register).

The input shift register accepts the one bit at a time in a bit-serial fashion till it

receives all 8 bits. When all the 8 bits are received by the input shift register it

loads its content into the DATA IN register parallelly. In a similar fashion, the

content of the DATA OUT register is transferred in parallel to the output shift

register as shown in the given figure

The serial interface port connected to the processor via system bus functions

similarly to the parallel port. The status and control block has two status flags SIN

and SOUT. The SIN flag is set to 1 when the I/O device inputs the data into the

DATA IN register through the input shift register and the SIN flag is cleared to 0

when the processor reads the data from the DATA IN register.

When the value of the SOUT register is 1 it indicates to the processor that the

DATA OUT register is available to receive new data from the processor. The

processor writes the data into the DATA OUT register and sets the SOUT flag to 0

56

and when the output shift register reads the data from the DATA OUT register sets

back SOUT to 1.

There are two techniques to transmit data using the encoding scheme.

1. Asynchronous Serial Transmission

2. Synchronous Serial Transmission

Asynchronous Serial Transmission

❖ In the asynchronous transmission, the clock used by the transmitter and

receiver is not synchronized. So, the bits to be transmitted are grouped into a

group of 6 to 8 bits which has a defined starting bit and ending bit. The start

bit has a logic value 0 and the stop bit has a logic value 1.

❖ The data received at the receiver end is recognized by this start and stop bit.

This approach is useful where is the transmission is slow.

Synchronous Serial Transmission

❖ The start and stop bit we used in the asynchronous transmission provides the

correct timing information but this approach is not useful where the

transmission speed is high.

❖ So, in the synchronous transmission, the receiver generates the clock that is

synchronized with the clock of the transmitter. This lets the transmitting

large blocks of data at a high speed.

Standard I/O interfaces

Consider a computer system using different interface standards. Let us look in to

Processor bus and Peripheral Component Interconnect (PCI) bus. These two buses

are interconnected by a circuit called bridge. It is a bridge between processor bus

and PCI bus. An example of a computer system using different interface standards

is shown in figure 4.38. The three major standard I/O interfaces discussed here are:

57

– PCI (Peripheral Component Interconnect)

– SCSI (Small Computer System Interface)

– USB (Universal Serial Bus)

PCI (Peripheral Component Interconnect)

Host, main memory and PCI bridge are connected to disk, printer and Ethernet

interface through PCI bus. At any given time, one device is the bus master. It has

the right to initiate data transfers by issuing read and write commands. A master is

called an initiator in PCI terminology. This is either processor or DMA controller.

The addressed device that responds to read and write commands is called a target.

A complete transfer operation on the bus, involving an address and a burst of data,

is called a transaction. Device configuration is also discussed.

SCSI Bus

It is a standard bus defined by the American National Standards Institute (ANSI).

A controller connected to a SCSI bus is an initiator or a target. The processor sends

a command to the SCSI controller, which causes the following sequence of events

to take place:

• The SCSI controller contends for control of the bus (initiator).

• When the initiator wins the arbitration process, it selects the target controller and

hands over control of the bus to it.

• The target starts an output operation. The initiator sends a command specifying

the required read operation.

• The target sends a message to the initiator indicating that it will temporarily

suspends the connection between them. Then it releases the bus. The target

controller sends a command to the disk drive to move the read head to the first

sector involved in the requested read operation.

• The target transfers the contents of the data buffer to the initiator and then

suspends the connection again.

58

• The target controller sends a command to the disk drive to perform another seek

operation.

• As the initiator controller receives the data, it stores them into the main memory

using the DMA approach.

• The SCSI controller sends an interrupt to the processor to inform it that the

requested operation has been completed.

USB (UNIVERSAL SERIAL BUS)

Universal Serial Bus, USB is a plug and play interface that allows a computer to

communicate with peripheral and other devices. USB-connected devices cover a

broad range; anything from keyboards and mice, to music players and flash drives.

The USB has been designed to meet several key objectives

➢ Provide a simple, low-cost, and easy to use interconnection system that

overcomes the difficulties due to the limited number of I/O ports available on a

computer

➢ Accommodate a wide range of data transfer characteristics for I/O devices,

including telephone and Internet connections

➢ Enhance user convenience through a “plug-and-play” mode of operation

USB devices

Today, there are millions of different USB devices that can be connected to your

computer. The list below contains just a few of the most common.

• Digital Camera

• External drive

• iPod or other MP3 players

• Keyboard

• Keypad

59

• Microphone

• Mouse

• Printer

• Joystick

• Scanner

• Smartphone

• Tablet

• Webcams

USB Architecture

When multiple I/O devices are connected to the computer through USB they all are

organized in a tree structure. Each I/O device makes a point-to-point connection

and transfers data using the serial transmission format we have discussed serial

transmission in our previous content ‘interface circuit’.

As we know a tree structure has a root, nodes and leaves. The tree structure

connecting I/O devices to the computer using USB has nodes which are also

referred to as a hub. Hub is the intermediatory connecting point between the I/O

devices and the computer. Every tree has a root here, it is referred to as the root

hub which connects the entire tree to the hosting computer. The leaves of the tree

here are nothing but the I/O devices such as a mouse, keyboard, camera, speaker.

60

USB Protocols

All information transferred over the USB is organized in packets, where a packet

consists of one or more bytes of information

➢ The information transferred on the USB can be divided into two broad

categories: control and data

➢ Control packets perform such tasks as addressing a device to initiate data

transfer, acknowledging that data have been received correctly, or indicating an

error

➢ Data packets carry information that is delivered to a device. For example, input

and output data are transferred inside data packets

USB Device States

A USB device can have several possible states as described below:

• Attached State: This state occurs when the device is attached to the Host.

61

• Powered State: After the device is attached, the Host provides power to the

device if it does not have its own power supply. The device should not draw more

than 100 mA in this state.

• Default State: This state occurs when the device is reset and has not been

assigned a unique address. In this state the device uses default control pipe for

communication and default address 0.

• Addressed State: The USB device enters this state after it gets a unique address

which is used for future communications.

• Configured: When the Host obtains required information from the device, it

loads the appropriate driver for the device. The host configures the device by

selecting a configuration. The device is now ready to do the operations it was

meant for.

• Suspended State: The USB device enters the suspended state when the bus

remains idle for more than 3mS. In this state, the device must not draw more than

500uA of current.
